Abstract

We present an ultrafine tunable single-frequency Brillouin fiber laser in which the fiber Brillouin gain also acts as a high-precision tunable filter. Controlling the strain on the fiber, the Stokes frequency shift may be precisely changed, and thus the lasing frequency can be tuned. Assisted by the frequency pulling effect, this method provides continuous ultrafine tuning ability for 30% of the free spectral range without mode hopping, and can cover 271MHz. The experiments showed that the laser achieves tuning step of 60kHz.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable Laser Applications (CRC Press, 2009).
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
    [CrossRef]
  3. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
    [CrossRef]
  4. C. Ye, Tunable External Cavity Diode Lasers (World Scientific, 2004).
    [CrossRef]
  5. G. Sarlet, G. Morthier, and R. Baets, J. Lightwave Technol. 18, 1128 (2000).
    [CrossRef]
  6. V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
    [CrossRef]
  7. Y. P. Lan, R. P. Pan, and C. L. Pan, Opt. Lett. 29, 510 (2004).
    [CrossRef] [PubMed]
  8. C. H. Yeh, and C. W. Chow, Laser Phys. Lett. 7, 158 (2010).
    [CrossRef]
  9. J. H. Geng, S. Staines, and S. B. Jiang, Opt. Lett. 33, 16 (2008).
    [CrossRef]
  10. H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
    [CrossRef]
  11. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  12. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
    [CrossRef]
  13. L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
    [CrossRef]
  14. A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 18, 556 (2001).
    [CrossRef]
  15. A. E. Siegman, Lasers (University Science, 1986).

2010 (1)

C. H. Yeh, and C. W. Chow, Laser Phys. Lett. 7, 158 (2010).
[CrossRef]

2008 (2)

J. H. Geng, S. Staines, and S. B. Jiang, Opt. Lett. 33, 16 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
[CrossRef]

2006 (1)

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

2004 (1)

2002 (1)

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

2001 (2)

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

A. Debut, S. Randoux, and J. Zemmouri, J. Opt. Soc. Am. B 18, 556 (2001).
[CrossRef]

2000 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1993 (1)

V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
[CrossRef]

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

Akimoto, Y.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

Babin, F.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Baets, R.

Bellemare, A.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
[CrossRef]

Chow, C. W.

C. H. Yeh, and C. W. Chow, Laser Phys. Lett. 7, 158 (2010).
[CrossRef]

Debut, A.

Duarte, F. J.

F. J. Duarte, Tunable Laser Applications (CRC Press, 2009).

Geng, J. H.

He, G.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Hegarty, J.

V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
[CrossRef]

Hu, P. G.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Hu, W. S.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
[CrossRef]

Inaba, H.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

Jiang, S. B.

Karasek, M.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Komukai, T.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

Lan, Y. P.

Leng, L. F.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

Mcgrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

Morthier, G.

Nakazawa, M.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Onae, A.

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

Pan, C. L.

Pan, R. P.

Phelan, P.

V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
[CrossRef]

Randoux, S.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

Riviere, C.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Roy, V.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Sarlet, G.

Schinn, G. W.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Staines, S.

Su, Y.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Weldon, V.

V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
[CrossRef]

Xia, Y. X.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Ye, C.

C. Ye, Tunable External Cavity Diode Lasers (World Scientific, 2004).
[CrossRef]

Yeh, C. H.

C. H. Yeh, and C. W. Chow, Laser Phys. Lett. 7, 158 (2010).
[CrossRef]

Yi, L. L.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Zemmouri, J.

Zhan, L.

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
[CrossRef]

Electron. Lett. (1)

V. Weldon, P. Phelan, and J. Hegarty, Electron. Lett. 29, 560 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[CrossRef]

H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, IEEE J. Quantum Electron. 38, 1325 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, IEEE J. Sel. Top. Quantum Electron. 7, 22 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. L. Yi, L. Zhan, W. S. Hu, P. G. Hu, Y. Su, L. F. Leng, and Y. X. Xia, IEEE Photon. Technol. Lett. 18, 1028 (2006).
[CrossRef]

J. Lightwave Technol. (2)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

G. Sarlet, G. Morthier, and R. Baets, J. Lightwave Technol. 18, 1128 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

C. H. Yeh, and C. W. Chow, Laser Phys. Lett. 7, 158 (2010).
[CrossRef]

Nat. Photon. (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 2, 180 (2008).
[CrossRef]

Opt. Lett. (2)

Other (3)

F. J. Duarte, Tunable Laser Applications (CRC Press, 2009).

C. Ye, Tunable External Cavity Diode Lasers (World Scientific, 2004).
[CrossRef]

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the tunable single-frequency BFL. (a) Structure of the laser. (b) Schematic control of the strain applied on the SMF.

Fig. 2
Fig. 2

Features of the single-frequency BFL. (a) BFL output power versus the pump power. (b) Power fluctuation in 3 h . (c) Linewidth measured by self-heterodyne method. (d) Optical spectra of the Brillouin pump and BFL output.

Fig. 3
Fig. 3

Schematic of the BFL tuning procedure. Applying strain to the fiber, the lasing frequency ω follows the Brillouin gain center ω a due to the FPE. The mode hopping is ω 2 ω 3 , and the CTR in one FSR is FSR ( ω 2 ω 3 ) .

Fig. 4
Fig. 4

Setup for measuring the frequency tuning of the BFL.

Fig. 5
Fig. 5

Frequency tuning measurement of the BFL. (a) Tuning range and frequency hopping. (b) Two beat signals in the CTR with 214.6 and 214.66 MHz . (c) Lasing frequency change with the SMF elongation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω p c + 2 α m p m ω ω a Δ ω a = q 2 π ω q p c ,
ω = ω q + ( ω a ω q ) c δ c / p Δ ω a + c δ c / p .
CTR = ( ω 1 ω 2 ) + ( ω 3 ω 4 ) = [ FSR ( ω a 2 ω a 3 ) ] c δ c / p Δ ω a + c δ c / p ,
ω 2 ω 3 = FSR CTR = FSR [ FSR ( ω a 2 ω a 3 ) ] c δ c / p Δ ω a + c δ c / p .
f = f p v B ,

Metrics