Abstract

We investigate the thermo-optic effects on second harmonic generation (SHG) in AlGaAs/AlOx microring (MR) waveguides. We show that SHG can be utilized to enhance the thermal sensitivity of MRs. This sensitivity makes this structure appropriate for thermal modulation and switching of optical signals or temperature sensing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
    [CrossRef]
  2. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826(2007).
    [CrossRef] [PubMed]
  3. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
    [CrossRef]
  4. M. Oxborrow, IEEE Trans. Microwave Theory Technol. 55, 1209 (2007).
    [CrossRef]
  5. M. Gandomkar and V. Ahmadi, Opt. Express 19, 9408(2011).
    [CrossRef] [PubMed]
  6. Y. Dumeige and P. Féron, Phys. Rev. A 74, 63804 (2006).
    [CrossRef]
  7. A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
    [CrossRef]
  8. K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, Opt. Lett. 26, 1785 (2001).
    [CrossRef]
  9. L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, Opt. Lett. 31, 3626 (2006).
    [CrossRef] [PubMed]
  10. J. Seres, Appl. Phys. B 73, 705 (2001).
    [CrossRef]
  11. K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
    [CrossRef]

2011

O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
[CrossRef]

M. Gandomkar and V. Ahmadi, Opt. Express 19, 9408(2011).
[CrossRef] [PubMed]

2008

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

2007

2006

L. Scaccabarozzi, M. M. Fejer, Y. Huo, S. Fan, X. Yu, and J. S. Harris, Opt. Lett. 31, 3626 (2006).
[CrossRef] [PubMed]

K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
[CrossRef]

Y. Dumeige and P. Féron, Phys. Rev. A 74, 63804 (2006).
[CrossRef]

2001

Ahmadi, V.

Aitchison, J. S.

Andronico, A.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Berger, V.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, Opt. Lett. 26, 1785 (2001).
[CrossRef]

Bozhevolnyi, S. I.

O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
[CrossRef]

Bristow, A. D.

Caillet, X.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Calligaro, M.

Chak, P.

De Rossi, A.

Ducci, S.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Dumeige, Y.

Y. Dumeige and P. Féron, Phys. Rev. A 74, 63804 (2006).
[CrossRef]

Ebrahimzadeh, M.

Fan, S.

Favero, I.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Fejer, M. M.

Féron, P.

Y. Dumeige and P. Féron, Phys. Rev. A 74, 63804 (2006).
[CrossRef]

Gandomkar, M.

Harris, J. S.

Huo, Y.

Iyer, R.

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

Kriezis, E. E.

O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
[CrossRef]

Leo, G.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Moutzouris, K.

Oe, K.

K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
[CrossRef]

Ortiz, V.

Oxborrow, M.

M. Oxborrow, IEEE Trans. Microwave Theory Technol. 55, 1209 (2007).
[CrossRef]

Rao, S. V.

Scaccabarozzi, L.

Seres, J.

J. Seres, Appl. Phys. B 73, 705 (2001).
[CrossRef]

Sipe, J. E.

Smirl, A. L.

Tsilipakos, O.

O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
[CrossRef]

van Driel, H. M.

Yamashita, K.

K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
[CrossRef]

Yang, Z.

Yoshimoto, M.

K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
[CrossRef]

Yu, X.

Appl. Phys. B

J. Seres, Appl. Phys. B 73, 705 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

M. Oxborrow, IEEE Trans. Microwave Theory Technol. 55, 1209 (2007).
[CrossRef]

J. Appl. Phys.

O. Tsilipakos, E. E. Kriezis, and S. I. Bozhevolnyi, J. Appl. Phys. 109, 073111 (2011).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

A. Andronico, X. Caillet, I. Favero, S. Ducci, V. Berger, and G. Leo, J. Eur. Opt. Soc. Rapid Publ. 3, 08030 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

Y. Dumeige and P. Féron, Phys. Rev. A 74, 63804 (2006).
[CrossRef]

Phys. Stat. Sol. C

K. Yamashita, M. Yoshimoto, and K. Oe, Phys. Stat. Sol. C 3, 693 (2006).
[CrossRef]

Other

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a single MR resonator structure. (b) Schematic of the multilayer AlGaAs / AlO x MR waveguide.

Fig. 2
Fig. 2

Resonance wavelength of the FW (TE) and SH (TM) fields versus the width of the waveguide at RT. The resonance wavelength of the SH is multiplied by 2 to be comparable with the wavelength of FW.

Fig. 3
Fig. 3

Total efficiency of SHG in a MR versus the input wavelength for various temperature variations. The active azimuthal mode pair is (98, 198), λ 0 = 1.5495 μm , and w = 830.8 nm .

Fig. 4
Fig. 4

(a) Output SH pulse power peak (normalized to input pulse power peak) versus temperature shift with the input pulse width as a parameter and w = 830.8 nm . (b) FWHM of the output SH pulse versus the temperature shift with the input pulse width as a parameter and w = 830.8 nm .

Fig. 5
Fig. 5

Thermal tuning and switching of SHG in the MR. The resonance wavelength of the SH field is multiplied by 2 to be comparable with the wavelength of the FW field. w = 830.8 nm .

Fig. 6
Fig. 6

Thermal switching of the output SH wavelength in the MR with w = 830.8 nm .

Metrics