Abstract

We propose and demonstrate a directed optical logic circuit that performs the encoding function from a 4 bit electrical signal to a 2 bit optical signal based on cascaded microring switches. The four logic input signals control the states of the switches, while the two logic outputs are given by the optical power at the output waveguides. For proof of concept, a thermo-optic switching effect is used with an operation speed of 10kbps.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
    [CrossRef] [PubMed]
  2. H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
    [CrossRef]
  3. H. J. Caulfield and S. Dolev, Nat. Photon. 4, 261 (2010).
    [CrossRef]
  4. A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
    [CrossRef]
  5. H. J. Caulfield, in Opt. Supercomputing. Lecture Notes in Computer Science (Springer, 2009), pp. 30–36 .
    [CrossRef]
  6. R. Soref, Adv. Optoelectron. 2011, 627802 (2011).
  7. Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
    [CrossRef] [PubMed]
  8. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, Opt. Lett. 35, 1620 (2010).
    [CrossRef] [PubMed]
  9. Y. H. Tian, L. Zhang, R. Q. Ji, L. Yang, P. Zhou, H. T. Chen, J. F. Ding, W. W. Zhu, Y. Y. Lu, L. X. Jia, Q. Fang, and M. B. Yu, Opt. Lett. 36, 1650 (2011).
    [CrossRef] [PubMed]
  10. Y. H. Tian, L. Zhang, R. Q. Ji, L. Yang, P. Zhou, J. F. Ding, H. T. Chen, W. W. Zhu, Y. Y. Lu, Q. Fang, L. X. Jia, and M. B. Yu, Opt. Lett. 36, 3314 (2011).
    [CrossRef] [PubMed]
  11. W. Mathlouthi, H. S. Rong, and M. Paniccia, Opt. Express 16, 16735 (2008).
    [CrossRef] [PubMed]

2011 (4)

2010 (3)

L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, Opt. Lett. 35, 1620 (2010).
[CrossRef] [PubMed]

H. J. Caulfield and S. Dolev, Nat. Photon. 4, 261 (2010).
[CrossRef]

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

2008 (1)

2007 (2)

J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
[CrossRef] [PubMed]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, Nat. Photon. 4, 261 (2010).
[CrossRef]

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

H. J. Caulfield, in Opt. Supercomputing. Lecture Notes in Computer Science (Springer, 2009), pp. 30–36 .
[CrossRef]

Chen, H. T.

Chen, P.

Ding, J. F.

Dolev, S.

H. J. Caulfield and S. Dolev, Nat. Photon. 4, 261 (2010).
[CrossRef]

Fang, Q.

Hardy, J.

Ji, R. Q.

Jia, L. X.

Jiang, Z. Y.

Liu, Y. L.

Lu, Y. Y.

Mathlouthi, W.

Paniccia, M.

Rong, H. S.

Shamir, J.

Soref, R.

R. Soref, Adv. Optoelectron. 2011, 627802 (2011).

Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
[CrossRef] [PubMed]

Soref, R. A.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Tian, Y. H.

Vikram, C. S.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Xu, Q.

Yang, L.

Yu, M. B.

Zavalin, A. I.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik 121, 1300 (2010).
[CrossRef]

Zhang, L.

Zhou, P.

Zhu, W. W.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Architecture and (b) micrograph of the device (CW: continuous wave, EPS: electrical pulse trains).

Fig. 2
Fig. 2

Response spectra of the device at the output port Y 1 with the voltages applied to MRR1, MRR2, MRR3, and MRR4 being (a) 0.5, 0, 0, and 0 V , (b) 0, 1.68, 0, and 0 V , (c) 0, 0, 2.44, and 0 V and (d) 0, 0, 0, and 3.12 V .

Fig. 3
Fig. 3

Response spectra of the device at the output port Y 2 with the voltages applied to MRR1, MRR2, MRR3, and MRR4 being (a) 0.5, 0, 0, and 0 V , (b) 0, 1.68, 0, and 0 V , (c) 0, 0, 2.44, and 0 V and (d) 0, 0, 0, and 3.12 V .

Fig. 4
Fig. 4

Signals applied to (a) MRR1, (b) MRR2, (c) MRR3, and (d) MRR4, (e) the result at the output port Y 1 , and (f) the result at the output port Y 2 of the device.

Tables (1)

Tables Icon

Table 1 Logical Truth Table of the Device

Metrics