Abstract

Time-domain absorption spectroscopy was demonstrated using a wideband, rapid wavelength-tunable, narrow-linewidth source based on an Er-doped ultrashort pulse fiber laser system. The spectrum of the Raman-shifted ultrashort soliton pulse was compressed using a comb-profile dispersion increasing fiber. Rapid wavelength sweeping was demonstrated using an electro-optical intensity modulator. The absorption spectrum of CH2Cl2 liquid at 16251780nm was observed in a 10μs time-domain measurement.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sanders, D. Mattison, L. Ma, J. Jeffries, and R. Hanson, Opt. Express 10, 505 (2002).
    [PubMed]
  2. M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
    [CrossRef]
  3. W.Drexler and J.G.Fujimoto, eds., Optical Coherence Tomography, Technology and Applications (Springer, 2009).
  4. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, Opt. Express 15, 15115 (2007).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Application of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).
  6. Y. Sych, R. Engelbercht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, Opt. Express 18, 22762 (2010).
    [CrossRef] [PubMed]
  7. N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
    [CrossRef]
  8. N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, Opt. Express 18, 11700 (2010).
    [CrossRef] [PubMed]
  9. K. Sumimura, T. Ohta, and N. Nishizawa, Opt. Lett. 33, 2892 (2008).
    [CrossRef] [PubMed]
  10. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, Opt. Lett. 35, 3631 (2010).
    [CrossRef] [PubMed]
  11. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
    [CrossRef]
  12. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, Opt. Express 19, 3044 (2011).
    [CrossRef] [PubMed]

2011

2010

2008

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

K. Sumimura, T. Ohta, and N. Nishizawa, Opt. Lett. 33, 2892 (2008).
[CrossRef] [PubMed]

2007

2006

M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
[CrossRef]

2002

1999

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Application of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

An, X.

Biedermann, B. R.

Caswell, A. W.

Chen, Y. L.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Davidson, D. F.

M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
[CrossRef]

Duker, J. S.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Eigenwillig, C. M.

Engelbercht, R.

Fujimoto, J. G.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, Opt. Express 15, 15115 (2007).
[CrossRef] [PubMed]

Genda, Y.

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Goto, T.

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Hanson, R.

Hanson, R. K.

M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
[CrossRef]

Herold, R. E.

Huber, R.

Itoh, K.

Jeffries, J.

Klein, T.

Kozlov, D.

Kranendonk, L. A.

Leipertz, A.

Ma, L.

Mattison, D.

Nishizawa, N.

Oehlschlaeger, M. A.

M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
[CrossRef]

Ohta, T.

Okura, Y.

Ozeki, Y.

Sanders, S.

Sanders, S. T.

Schmauss, B.

Schuman, J. S.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Seeger, T.

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Sumimura, K.

Sych, Y.

Takahashi, K.

Urata, Y.

Wieser, W.

Combust. Flame

M. A. Oehlschlaeger, D. F. Davidson, and R. K. Hanson, Combust. Flame 147, 195 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Nishizawa and T. Goto, IEEE Photon. Technol. Lett. 11, 325 (1999).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, Investig. Ophthalmol. Vis. Sci. 49, 5103 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. P. Agrawal, Application of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008).

W.Drexler and J.G.Fujimoto, eds., Optical Coherence Tomography, Technology and Applications (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of electrically controlled, rapid wavelength-tunable, narrow-linewidth source using the CPF and a near-IR absorption spectroscopy system. EOM: electro-optical modulator, CPF: comb-profile fiber, FM: flip mirror, Q-SC: quasi-supercontinuum, NLS: narrow-linewidth source.

Fig. 2
Fig. 2

Spectra of spectrally compressed, wavelength-tunable soliton pulses using the CPF. Wavelength was shifted using intensity control by the EO modulator. The inset shows optical spectra of a soliton pulse and a spectrally compressed pulse using the CPF at 1.64 um . Symbols represent the spectral width of each spectrum at FWHM.

Fig. 3
Fig. 3

Spectra of (a) signal beam with and without the sample ( CH 2 Cl 2 ) and (b) reference beam.

Fig. 4
Fig. 4

Observed temporal waveform of (a) signal beam with and without the sample ( CH 2 Cl 2 ) and (b) reference beam.

Fig. 5
Fig. 5

Observed absorbance of CH 2 Cl 2 liquid by spectroscopic measurement with the OSA and temporal measurement with rapid wavelength-tunable, narrow-linewidth source.

Fig. 6
Fig. 6

Absorption spectra of CH 4 gas observed with quasi-SC.

Metrics