Abstract

Fiber optic sensors are typically used with expensive tunable lasers or optical spectrum analyzers for wavelength interrogation. We propose to replace the tunable laser by a broadband optical source incorporated with a novel thin linewidth acousto-optic tunable filter. It utilizes optical beam expanders constituted by photonic crystal rows of air holes in LiNbO3 waveguide. A new design is numerically studied for a short structure (with 32 photonic crystal rows) by a two-dimensional finite-difference time-domain method. Extrapolation of these results to larger structure sizes (about 1cm) demonstrates the possibility to develop compact interrogators with 0.4pm wavelength resolution and 40nm tunable range around 1550nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  2. H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
    [CrossRef]
  3. M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
    [CrossRef]
  4. H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
    [CrossRef]
  5. T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.
  6. M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
    [CrossRef]
  7. A. V. Tsarev, Opt. Lett. 35, 4033 (2010).
    [CrossRef] [PubMed]
  8. Rsoft Photonic CAD Suite, RSoft Design Group, Inc., www.rsoftdesign.com.
  9. A. V. Tsarev, Quantum Electron. 37, 393 (2007).
    [CrossRef]
  10. D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
    [CrossRef]
  11. S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
    [CrossRef]
  12. A. V. Tsarev, 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2002), Vol.  2, pp. 823–824.
    [CrossRef]
  13. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
    [CrossRef]
  14. F. Chen, J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]

2010 (1)

2009 (1)

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

2008 (1)

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

2007 (1)

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

2005 (1)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

1998 (1)

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

1996 (1)

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

1985 (1)

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

1982 (1)

D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Bernal, M.-P.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Chen, F.

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

Chung, W. H.

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Doi, M.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Fu, H. Y.

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Herrmann, H.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Kadota, M.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Kikkarin, S. M.

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

Kobayashi, H.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Liu, H. L.

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

Nakazawa, T.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Petrov, D. V.

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Schäfer, K.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Schmidt, Ch.

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

Seino, M.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

Takasu, Y.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

Tam, H. Y.

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

Tanaka, S.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Taniguchi, S.

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

Tsarev, A. V.

A. V. Tsarev, Opt. Lett. 35, 4033 (2010).
[CrossRef] [PubMed]

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
[CrossRef]

A. V. Tsarev, 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2002), Vol.  2, pp. 823–824.
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Yakovin, I. B.

D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
[CrossRef]

Yakovkin, I. B.

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

Yamada, K.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Appl. Phys. Lett. (1)

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Herrmann, K. Schäfer, and Ch. Schmidt, IEEE Photon. Technol. Lett. 10, 120 (1998).
[CrossRef]

IEEE Sens. J. (1)

H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, IEEE Sens. J. 8, 1598 (2008).
[CrossRef]

J. Appl. Phys. (1)

F. Chen, J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

M. G. Xu, H. Geiger, and J. P. Dakin, J. Lightwave Technol. 14, 391 (1996).
[CrossRef]

Opt. Lett. (1)

Quantum Electron. (3)

A. V. Tsarev, Quantum Electron. 37, 393 (2007).
[CrossRef]

D. V. Petrov, A. V. Tsarev, and I. B. Yakovin, Quantum Electron. 12, 129 (1982).
[CrossRef]

S. M. Kikkarin, D. V. Petrov, A. V. Tsarev, and I. B. Yakovkin, Quantum Electron. 15, 77 (1985).
[CrossRef]

Other (4)

A. V. Tsarev, 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2002), Vol.  2, pp. 823–824.
[CrossRef]

T. Nakazawa, M. Doi, S. Taniguchi, Y. Takasu, and M. Seino, in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1998), Vol.  2, paper PD1.

M. Kadota, K. Yamada, H. Kobayashi, and S. Tanaka, in Proceedings of 18th IEEE Internaional Symposium on the Applications of Ferroelectrics (IEEE, 2009), pp. 1–4.
[CrossRef]

Rsoft Photonic CAD Suite, RSoft Design Group, Inc., www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the AO interrogation system with the circulator.

Fig. 2
Fig. 2

General design of the AO interrogator and field distribution at drop wavelength ( Λ = 1.6456 μm , 2D FDTD simulation). Positions of power monitors correspond to measuring power of the incident beam (1), interrogated signal of the back pass beam (2), transmitted (3) and reflected signals (4) of the FP filter, and drop signal (5) at the AOTF. Positions of waveguide reflectors have the following notations: 6—partial reflector as lines of holes; 7—partial reflector (50%) to collect input and drop signal of AOTF; 8—FP strong reflector (100%); 9—FP partial reflector; 10—strong reflector (100%) of the light out of the simulation region.

Fig. 3
Fig. 3

AOTF wavelength response with the Fabry–Perot sensor element ( FWHM = 2.4 nm ) for BOS illumination. Λ = 1.6456 μm (2D FDTD simulation).

Fig. 4
Fig. 4

Wavelength interrogation by the AOTF. Total power signal and filter wavelength ( λ f ) at different SAW wavelengths Λ.

Fig. 5
Fig. 5

Acoustic power for 100% diffraction efficiency versus SAW frequency for different waveguide depths h ( Δ n = 0.022 ) and thicknesses H of As 2 S 3 cover ( n f = 2.5 ), in μm . L = 0.8 cm .

Tables (1)

Tables Icon

Table 1 Parameters of the AO Interrogator

Metrics