Abstract

A high-temperature sensor based on a Mach–Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed and fabricated by concatenating two microcavities separated by a middle section. A femtosecond laser is used to fabricate a microhole on the center of a fiber end. Then a micro-air-cavity is formed by splicing the microholed fiber end with a normal fiber end. The interferometer is applied for high-temperature sensing, in the range of 5001200°C, with a sensitivity of 109pm/°C that, to the best of our knowledge, is highest in silica fiber temperature sensors. Also, the interferometer is insensitive to external refractive index (RI), which is desirable for temperature sensors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
    [CrossRef] [PubMed]
  2. N. Lin, L. Jiang, S. Wang, L. Yuan, H. Xiao, Y. Lu, and H. L. Tsai, Appl. Opt. 49, 6463 (2010).
    [CrossRef] [PubMed]
  3. X. M. Zhang, Y. Liu, H. Bae, C. Pang, and M. Yu, Opt. Express 17, 23965 (2009).
    [CrossRef]
  4. Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
    [CrossRef]
  5. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, Opt. Lett. 31, 2960 (2006).
    [CrossRef] [PubMed]
  6. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  7. A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
    [CrossRef]
  8. X. Chen, K. Zhou, L. Zhang, and I. Bennion, Appl. Opt. 44, 178 (2005).
    [CrossRef] [PubMed]
  9. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
    [CrossRef] [PubMed]
  11. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
    [CrossRef]
  12. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, Opt. Lett. 33, 536 (2008).
    [CrossRef] [PubMed]
  13. Y. Zhu, P. Shum, H. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu, Opt. Lett. 30, 367 (2005).
    [CrossRef] [PubMed]
  14. Y. Zhu, Z. Huang, F. Shen, and A. Wang, Opt. Lett. 30, 711 (2005).
    [CrossRef] [PubMed]
  15. C.-H. Lin, Z.-H. Rao, L. Jiang, W.-J. Tsai, P.-H. Wu, C.-W. Chien, S.-J. Chen, and H.-L. Tsai, Opt. Lett. 35, 2490 (2010).
    [CrossRef] [PubMed]
  16. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, Sensors 11, 54 (2011).
    [CrossRef]
  17. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
    [CrossRef]

2011

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, Sensors 11, 54 (2011).
[CrossRef]

2010

2009

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
[CrossRef] [PubMed]

X. M. Zhang, Y. Liu, H. Bae, C. Pang, and M. Yu, Opt. Express 17, 23965 (2009).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

2008

2006

2005

1996

Araújo, F. M.

Bae, H.

Bay, H.

Bennion, I.

Bhatia, V.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chen, S.-J.

Chen, X.

Chien, C.-W.

Chung, Y.

Ding, J. F.

A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
[CrossRef]

Fabris, J. L.

Falate, R.

Ferreira, L. A.

Frazão, O.

Ha, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Han, Y.

Hao, J.

He, S.

A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
[CrossRef]

Hong, W.

Hu, J.

Huang, Z.

Hwang, D.

Jiang, L.

Kim, D. K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Lee, S.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Li, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Liao, C.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Lin, C.-H.

Lin, N.

Liu, Y.

Lu, C.

Lu, P.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
[CrossRef] [PubMed]

Lu, Y.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Oh, K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Pang, C.

Park, M.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Rao, Z.-H.

Santos, J. L.

Shao, Li-Y.

A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
[CrossRef]

Shen, F.

Shin, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Shum, P.

Sohn, I. B.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Tian, Z.

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Tsai, H. L.

Tsai, H.-L.

Tsai, W.-J.

Vengsarkar, A. M.

Wang, A.

Wang, D. N.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
[CrossRef] [PubMed]

Wang, S.

Wang, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
[CrossRef] [PubMed]

Wei, T.

Wu, P.-H.

Xiao, H.

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Yan, M.

Yang, M.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, Opt. Lett. 34, 3328 (2009).
[CrossRef] [PubMed]

Yu, M.

Yu, X.

Yuan, L.

Zhang, A. P.

A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
[CrossRef]

Zhang, L.

Zhang, X. M.

Zhao, L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, Sensors 11, 54 (2011).
[CrossRef]

Zhou, K.

Zhu, Y.

Appl. Opt.

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

A. P. Zhang, Li-Y. Shao, J. F. Ding, and S. He, IEEE Photon. Technol. Lett. 17, 2397 (2005).
[CrossRef]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, Sensors 11, 54 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the microcavity-based MZI, (b) the microscopic image of the microhole with the diameter of 7 μm , and (c) splicer panel view of the microcavity.

Fig. 2
Fig. 2

Transmission spectrum of (a) a single microcavity, (b) two microcavities with a separated length of 20 mm , and (c) same setup as (b) with reversed propagation direction.

Fig. 3
Fig. 3

Spatial frequency spectrum of the MZI.

Fig. 4
Fig. 4

Transmission spectra of the MZI in different sodium chloride solutions.

Fig. 5
Fig. 5

Wavelength shifts of peak A with temperature increases. The inset is the transmission spectra (a) before heating at 25 ° C , (b) and (c) the first time and second time cooling down to 25 ° C , respectively.

Metrics