Abstract

We propose and demonstrate a wavelength tunable wavelength division multiplexing channel isolation filter based on two concatenated chirped long-period fiber gratings (LPGs). An intergrating space (IGS), deliberately introduced between the two gratings, provides an extra phase difference between the core and cladding modes. Changing this phase by heating the IGS without affecting the gratings tunes the channels. A theoretical account of the filter action is also presented and the results are found to be in excellent agreement with the experiments. Unlike the filters based on normal concatenated chirped LPGs without an IGS, the current filter shows a linear tuning over an increased spectral range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Kartalopoulos, “Optical wavelength division multiplexing (WDM) networks and technology,” IEEE Short Courses, presented at the IEEE Global Telecommunications Conference (GLOBECOM), St. Louis, Mo., USA, November 28–December 2, 2005.
  2. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).
  3. K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).
  4. S. R. C. Murthy and M. Guruswamy, WDM Optical Networks, Concepts, Design, and Algorithms (Prentice Hall, 2002).
  5. Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
    [CrossRef]
  6. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
    [CrossRef] [PubMed]
  7. Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
    [CrossRef]
  8. X. J. Gu, Opt. Lett. 23, 509 (1998).
    [CrossRef]
  9. M. Das and K. Thyagarajan, Opt. Commun. 197, 67 (2001).
    [CrossRef]
  10. R. Kritzinger and P. L. Swart, in 7th AFRICON Conference in Africa (IEEE, 2004), pp. 985–990.
    [CrossRef]
  11. M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
    [CrossRef]
  12. R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

2009 (2)

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

2008 (1)

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

2005 (1)

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

2001 (1)

M. Das and K. Thyagarajan, Opt. Commun. 197, 67 (2001).
[CrossRef]

1998 (1)

Choi, Y.-W.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Das, M.

M. Das and K. Thyagarajan, Opt. Commun. 197, 67 (2001).
[CrossRef]

Eom, T. J.

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Gu, X. J.

Guruswamy, M.

S. R. C. Murthy and M. Guruswamy, WDM Optical Networks, Concepts, Design, and Algorithms (Prentice Hall, 2002).

Jung, H. S.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Kartalopoulos, S. V.

S. V. Kartalopoulos, “Optical wavelength division multiplexing (WDM) networks and technology,” IEEE Short Courses, presented at the IEEE Global Telecommunications Conference (GLOBECOM), St. Louis, Mo., USA, November 28–December 2, 2005.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

Kim, W.-K.

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Ko, D.-K.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Kritzinger, R.

R. Kritzinger and P. L. Swart, in 7th AFRICON Conference in Africa (IEEE, 2004), pp. 985–990.
[CrossRef]

Lee, H. P.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

Lee, H.-M.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Lee, H.-Y.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Lee, Y. L.

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Li, Q.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

Lin, C.-H.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

Luo, S.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Murthy, S. R. C.

S. R. C. Murthy and M. Guruswamy, WDM Optical Networks, Concepts, Design, and Algorithms (Prentice Hall, 2002).

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).

Shin, W.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, Opt. Express 17, 10718 (2009).
[CrossRef] [PubMed]

Swart, P. L.

R. Kritzinger and P. L. Swart, in 7th AFRICON Conference in Africa (IEEE, 2004), pp. 985–990.
[CrossRef]

Thyagarajan, K.

M. Das and K. Thyagarajan, Opt. Commun. 197, 67 (2001).
[CrossRef]

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Tseng, P.-Y.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

Wang, Y.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Xia, Y.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Yan, M.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Yang, W.-S.

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Yu, B.-A.

Zhan, L.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Zhang, Z.

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. L. Lee, Y.-W. Choi, H. S. Jung, T. J. Eom, W. Shin, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, IEEE Photon. Technol. Lett. 21, 507 (2009).
[CrossRef]

Opt. Commun. (3)

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, Opt. Commun. 250, 280 (2005).
[CrossRef]

M. Das and K. Thyagarajan, Opt. Commun. 197, 67 (2001).
[CrossRef]

M. Yan, S. Luo, L. Zhan, Y. Wang, Y. Xia, and Z. Zhang, Opt. Commun. 281, 2784 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (6)

S. V. Kartalopoulos, “Optical wavelength division multiplexing (WDM) networks and technology,” IEEE Short Courses, presented at the IEEE Global Telecommunications Conference (GLOBECOM), St. Louis, Mo., USA, November 28–December 2, 2005.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

K. Okamoto, Fundamentals of Optical Waveguides(Academic, 2006).

S. R. C. Murthy and M. Guruswamy, WDM Optical Networks, Concepts, Design, and Algorithms (Prentice Hall, 2002).

R. Kashyap, Fiber Bragg Gratings (Academic, 2010).

R. Kritzinger and P. L. Swart, in 7th AFRICON Conference in Africa (IEEE, 2004), pp. 985–990.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the WDM filter based on concatenated LPGs with an IGS.

Fig. 2
Fig. 2

Transmission spectrum of the WDM filter recorded at three different IGS temperatures: T = 25 ° C (solid curve), T = 35 ° C (dashed curve), T = 45 ° C (dotted curve), with an optical spectrum analyzer resolution of 1.0 nm .

Fig. 3
Fig. 3

Experimental variation of spectral shift (error bars) corresponding to the transmission minima near 1538 nm , with increasing temperature of the IGS. The theoretical spectral shift is shown by the solid curve.

Fig. 4
Fig. 4

Theoretical transmission spectra of the concatenated chirped grating at the three different IGS temperatures shown in Fig. 2: T = 25 ° C (solid curve), T = 35 ° C (dashed curve), and T = 45 ° C (dashed–dotted curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ A c i ( z ) A c l i ( z ) ] = [ cos ( α l ) + i δ α sin ( α l ) i κ c c l α sin ( α l ) i κ c c l α sin ( α l ) cos ( α l ) i δ α sin ( α l ) ] [ A c i + 1 ( z ) A c l i + 1 ( z ) ] ,
δ = 1 2 [ κ c c κ c l c l + β c β c l 2 π Λ ] , α = ( | κ c c l | 2 + δ 2 ) 1 / 2 .
U = [ exp ( i β c L ) 0 0 exp ( i β c l L ) ] ,

Metrics