Abstract

We present our latest results on the generation of ultrashort vacuum UV (VUV) pulses by nonresonant four-wave mixing of chirped broadband pulses generated by filamentation of the fundamental of a Ti:sapphire laser with relatively narrowband pulses at the third harmonic. Positive chirp at the broadband idler yields negatively chirped VUV pulses necessary to compensate for material dispersion of a MgF2 window in the VUV beam path. Pulse energies exceeding 400nJ are available for time-resolved experiments. Pulse duration is measured by pump–probe ionization of Xe gas, providing the cross correlation between the fifth harmonic and the fundamental.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
    [CrossRef]
  2. V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
    [CrossRef]
  3. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, J. Opt. Soc. Am. B 21, 370 (2004).
    [CrossRef]
  4. M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
    [CrossRef]
  5. S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
    [CrossRef]
  6. L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
    [CrossRef] [PubMed]
  7. P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, Opt. Express 15, 6389 (2007).
    [CrossRef] [PubMed]
  8. K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuß, Opt. Lett. 33, 723 (2008).
    [CrossRef] [PubMed]
  9. T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van Tilborg, Y. Liu, R. W. Falcone, and A. Belkacem, Opt. Lett. 35, 3664 (2010).
    [CrossRef] [PubMed]
  10. A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
    [CrossRef]
  11. M. Ghotbi, M. Beutler, and F. Noack, Opt. Lett. 35, 3492(2010).
    [CrossRef] [PubMed]
  12. N. Zhavoronkov, J. Opt. A 11 (2009).
    [CrossRef]
  13. P. Zuo, T. Fuji, and T. Suzuki, Opt. Express 18, 16183(2010).
    [CrossRef] [PubMed]

2010

2009

N. Zhavoronkov, J. Opt. A 11 (2009).
[CrossRef]

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

2008

2007

2006

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

2004

2001

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

2000

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

1999

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

1995

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Allison, T. K.

Babushkin, I.

Backus, S.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Bartels, R.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Belkacem, A.

Benis, E. P.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Beutler, M.

Charalambidis, D.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Chen, C.

Durfee, C. G.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Falcone, R. W.

Farmanara, P.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Faucher, O.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Freyer, W.

Fuji, T.

Fuß, W.

Ghotbi, M.

Herrmann, J.

Hertel, I. V.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Husakou, A.

Kanai, T.

Kanda, T.

Kapteyn, H. C.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Khurmi, C.

Kittelmann, O.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Korn, G.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Kosma, K.

Kruse, J.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Le Blanc, S. P.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Liu, Y.

Mero, M.

Misoguti, L.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Murnane, M. M.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Noack, F.

Peralta Conde, A.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Qi, Z.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Radloff, W.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Ringling, J.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

Sauerbrey, R.

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

Schmid, W. E.

Sekikawa, T.

Steinkellner, O.

P. Tzankov, O. Steinkellner, J. Zheng, M. Mero, W. Freyer, A. Husakou, I. Babushkin, J. Herrmann, and F. Noack, Opt. Express 15, 6389 (2007).
[CrossRef] [PubMed]

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Stert, V.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Stooke, A. M.

Suzuki, T.

Togashi, T.

Trushin, S. A.

Tzallas, P.

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Tzankov, P.

van Tilborg, J.

Wang, J.

Watanabe, S.

Wick, M. T.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Wittmann, M.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Wright, T. W.

Xu, Z.

Zhang, C.

Zhavoronkov, N.

N. Zhavoronkov, J. Opt. A 11 (2009).
[CrossRef]

Zheng, J.

Zuo, P.

Appl. Phys. B

S. P. Le Blanc, Z. Qi, and R. Sauerbrey, Appl. Phys. B 61, 439 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, IEEE J. Sel. Top. Quantum Electron. 5, 1532 (1999).
[CrossRef]

J. Opt. A

N. Zhavoronkov, J. Opt. A 11 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. Wittmann, M. T. Wick, O. Steinkellner, P. Farmanara, V. Stert, W. Radloff, G. Korn, and I. V. Hertel, Opt. Commun. 173, 323 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Peralta Conde, J. Kruse, O. Faucher, P. Tzallas, E. P. Benis, and D. Charalambidis, Phys. Rev. A 79, 061405(2009).
[CrossRef]

Phys. Rev. Lett.

L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 87, 013601(2001).
[CrossRef] [PubMed]

Rep. Prog. Phys.

I. V. Hertel and W. Radloff, Rep. Prog. Phys. 69, 1897 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of the VUV generation experiment: BS1, beam splitter for TH/filament separation R = 50 % ; CM, broadband chirped mirror pair; BS2, beam splitter for pulse characterization; CC, chirp compensation; DL1, manual delay line; SHG, second-harmonic crystal; CP, compensation plate; HWP, half-wave plate for FF; THG, sum-frequency crystal; DL2, motorized delay line for cross correlation; MM, motorized mirror for spectral measurements; TOF, time-of-flight mass spectrometer; SM, spectrometer.

Fig. 2
Fig. 2

(a) Typical spectrum (green solid curve) and (b) cross correlation (black squares) along with Gaussian fit (red solid curve) of the VUV pulse obtained by noncollinear FWM at an argon pressure of 350 mbar s . Spectrum (a) (transform limit: 10.3 fs ) is recorded with a wedge insertion appropriate for optimal VUV pulse compression as indicated by (b) cross correlation (FWHM: 18 fs , corresponding to 16.4 fs VUV pulse duration, pulse energy 410 nJ ). The modulations of the spectrum arise from the strongly modulated idler spectrum.

Fig. 3
Fig. 3

Measured VUV pulse duration (black circles) versus additional glass path in wedges. The red solid curve shows the calculated VUV pulse duration taking into account GVD and TOD of the wedges and the 0.2 mm Mg F 2 window (details in text).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ 1 ( ω ) = [ ϕ FF ( ω FF ) + ϕ FF ( ω FF ) ( ω ω VUV ) 1 2 ϕ FF ( ω FF ) ( ω ω VUV ) 2 + 1 6 ϕ FF ( ω FF ) ( ω ω VUV ) 3 + ] · L g ,
ϕ 2 ( ω ) = [ ϕ VUV ( ω VUV ) + ϕ VUV ( ω VUV ) ( ω ω VUV ) + 1 2 ϕ VUV ( ω VUV ) ( ω ω VUV ) 2 + 1 6 ϕ VUV ( ω VUV ) ( ω ω VUV ) 3 + ] · L w

Metrics