Abstract

Surface enhanced Raman scattering has been investigated from rhodamine 6G molecules embedded in polymethyl methacrylate (R6G+PMMA) and coated on one-dimensional and two-dimensional gold-dielectric gratings fabricated by laser interference lithographically. The Raman signals from these plasmonic templates are 200 to 400 times larger than the signal from R6G+PMMA coated on plain gold films. The enhancement of the Raman signal varies almost periodically with the period of the grating. Finite-difference time-domain simulations show that large electromagnetic near fields occur at the metallic edges due to the resonant excitation of localized surface plasmon of the gold patches by the pump laser. These give rise to large enhancements of the Raman signal. The dependence on period is due to the combined effects of the localized surface plasmon and the periodic grating that couples the pump laser to the surface plasmon polariton.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
    [CrossRef]
  2. C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317(2006).
    [CrossRef] [PubMed]
  3. A. Kudelski and J. Bukowska, Chem. Phys. Lett. 222, 555 (1994).
    [CrossRef]
  4. M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
    [CrossRef]
  5. A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
    [CrossRef]
  6. R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
    [CrossRef]
  7. M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
    [CrossRef]
  8. M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
    [CrossRef]
  9. M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
    [CrossRef] [PubMed]
  10. M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
    [CrossRef] [PubMed]
  11. V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
    [CrossRef] [PubMed]
  12. A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
    [CrossRef]
  13. X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
    [CrossRef]
  14. S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).
  15. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
    [CrossRef]
  16. http://www.microchem.com, as of 11/6/2011.

2011 (1)

M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
[CrossRef] [PubMed]

2010 (4)

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

2007 (1)

R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
[CrossRef]

2006 (1)

C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317(2006).
[CrossRef] [PubMed]

2005 (1)

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef]

2004 (1)

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

2002 (1)

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

2000 (2)

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

1999 (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

1994 (1)

A. Kudelski and J. Bukowska, Chem. Phys. Lett. 222, 555 (1994).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Aikens, C. M.

C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317(2006).
[CrossRef] [PubMed]

Andrade, G. F. S.

M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
[CrossRef] [PubMed]

Astilean, S.

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

Baker, G. A.

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef]

Behymer, E.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Bloomstein, T. M.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Bolboaca, M.

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

Bond, T. C.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Bora, M.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Britten, J. A.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Brolo, A. G.

M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Bukowska, J.

A. Kudelski and J. Bukowska, Chem. Phys. Lett. 222, 555 (1994).
[CrossRef]

Busnaina, A.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Cann, S. G.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Carlen, E. T.

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

Chang, A. S. -P.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Cronin, S. B.

R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
[CrossRef]

Dawson, P.

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Doherty, M. D.

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Echegoyen, Y.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Fan, M.

M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
[CrossRef] [PubMed]

Gartia, M. R.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Hai, M.

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

Iliescu, T.

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

Inoue, H.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Jin, M.

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

Kron, K. E.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Kudelski, A.

A. Kudelski and J. Bukowska, Chem. Phys. Lett. 222, 555 (1994).
[CrossRef]

Kumar, R.

R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
[CrossRef]

Larson, C.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Liberman, V.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Liu, G. L.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Maniu, D.

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

Marchant, M. F.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Matsukawa, K.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Matsushita, A.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

McPhillips, J.

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Miles, R.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Minami, Y.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Moore, D. S.

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef]

Murphy, A.

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Nguyen, H.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

Noda, I.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Otto, C.

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

Ozaki, Y.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Pollard, R. J.

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Pully, V.

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

Qijing, Z.

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

Ren, Y.

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Rothschild, M.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317(2006).
[CrossRef] [PubMed]

Somu, S.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

van der Berg, A.

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

Voges, E.

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

Xingsheng, X.

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

Xu, Z.

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Yilmaz, C.

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Yunsheng, Z.

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

Zhou, H.

R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
[CrossRef]

Adv. Mater. (1)

V. Liberman, C. Yilmaz, T. M. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. G. Cann, K. E. Kron, M. F. Marchant, and M. Rothschild, Adv. Mater. 22, 4298 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).
[CrossRef]

Anal. Chim. Acta (1)

M. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Chim. Acta 693, 7 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Kumar, H. Zhou, and S. B. Cronin, Appl. Phys. Lett. 91, 223105 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

A. Kudelski and J. Bukowska, Chem. Phys. Lett. 222, 555 (1994).
[CrossRef]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999).
[CrossRef]

J. Opt. A (1)

X. Xingsheng, M. Hai, Z. Qijing, and Z. Yunsheng, J. Opt. A 4, 237 (2002).
[CrossRef]

J. Phys. Chem. A (1)

C. M. Aikens and G. C. Schatz, J. Phys. Chem. A 110, 13317(2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

M. Jin, V. Pully, C. Otto, A. van der Berg, and E. T. Carlen, J. Phys. Chem. C 114, 21953 (2010).
[CrossRef]

M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, and P. Dawson, J. Phys. Chem. C 114, 19913 (2010).
[CrossRef]

Nanotechnology (1)

M. R. Gartia, Z. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. -P. Chang, T. C. Bond, and G. L. Liu, Nanotechnology 21, 395701 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. Kahl and E. Voges, Phys. Rev. B 61, 14078 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370(1972).
[CrossRef]

Romanian Rep. Phys. (1)

S. Astilean, M. Bolboaca, D. Maniu, and T. Iliescu, Romanian Rep. Phys. 56, 346 (2004).

Vib. Spect. (1)

A. Matsushita, Y. Ren, K. Matsukawa, H. Inoue, Y. Minami, I. Noda, and Y. Ozaki, Vib. Spect. 24, 171 (2000).
[CrossRef]

Other (1)

http://www.microchem.com, as of 11/6/2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Typical atomic force microscope images of (a) 1D and (b) 2D grating templates of 800 nm period. Corresponding diffraction images (with 532 nm laser) are also shown by black arrows that imply large area nanopatterning.

Fig. 2
Fig. 2

(a) Raman spectra of R 6 G + PMMA deposited on 1D gratings of various periods. (b) Enhancements for the various lines and periods. (c) Dependence of SERS on the template period. The solid lines (splines) in (c) are only a guide for the eye. Inset in (a) shows the Raman signal measured from R 6 G + PMMA on a plain gold film.

Fig. 3
Fig. 3

Raman spectra of R 6 G + PMMA deposited on 2D templates with different periods and concentrations of R6G (a)  19 μmolar and (b)  125 μmolar . Inset in (b) shows the change in SERS (black, red, and blue lines are for 1375 cm 1 , 1242 cm 1 , and 1130 cm 1 lines, respectively) with the period.

Fig. 4
Fig. 4

Spatial distributions of simulated electric fields for (a),(b)  600 nm and (c),(d)  800 nm 1D structures. The templates were modeled as separated strips of gold with the dielectric photoresist in between. Enhanced local fields are seen at the metallic edges (a),(b), whereas light is mostly reflected back due to Bragg condition and the localized plasmon is weakly excited (c),(d).

Fig. 5
Fig. 5

Plot of the square of the largest electric fields amplitudes obtained in simulation with periodicity.

Metrics