Abstract

The proof-of-concept demonstration of a microfiber-based flexural disc accelerometer is presented. The reduced microfiber size and bending radii give rise to high device compactness and responsivity. A flexural disc accelerometer manufactured from a 10mm long microfiber showed a performance of 2.2rad/g, with the responsivity expected to increase proportionally with the microfiber length.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact acoustic sensor based on air-backed mandrel coiled with optical microfiber

George Y. Chen, Gilberto Brambilla, and Trevor P. Newson
Opt. Lett. 37(22) 4720-4722 (2012)

Experimental verification of the modified spring-mass theory of fiber Bragg grating accelerometers using transverse forces

Kuo Li, Tommy H. T. Chan, Man Hong Yau, David P. Thambiratnam, and Hwa Yaw Tam
Appl. Opt. 53(6) 1200-1211 (2014)

Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications

Yanzhen Tan, Li-Peng Sun, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 21(1) 154-164 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription