Abstract

Computer-generated holograms displayed by phase-modulating spatial light modulators have become a well- established tool for beam shaping purposes in holographic optical tweezers. Still, the generation of light intensity patterns with high spatial symmetry and simultaneously without interfering ghost traps is a challenge. We have implemented an iterative Fourier transform algorithm that is capable of controlling these ghost traps and demonstrate the benefit of this approach in the experiment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Padgett, J. Molloy, and D. McGloin, eds., Optical Tweezers: Methods and Applications, Series in Optics and Optoelectronics (Taylor and Francis, 2010).
    [CrossRef]
  2. J. Curtis, C. Schmitz, and J. Spatz, Opt. Lett. 30, 2086 (2005).
    [CrossRef] [PubMed]
  3. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
    [CrossRef]
  4. R. Gerchberg and W. Saxton, Optik 35, 237 (1972).
  5. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martin-Badosa, Opt. Express 14, 2101 (2006).
    [CrossRef] [PubMed]
  6. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 13, 5831 (2005).
    [CrossRef] [PubMed]
  7. R. Di Leonardo, F. Ianni, and G. Ruocco, Opt. Express 15, 1913 (2007).
    [CrossRef] [PubMed]
  8. S. Zwick, T. Haist, M. Warber, and W. Osten, Appl. Opt. 49, F47 (2010).
    [CrossRef] [PubMed]
  9. E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
    [CrossRef]
  10. M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
    [CrossRef] [PubMed]

2010 (2)

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

S. Zwick, T. Haist, M. Warber, and W. Osten, Appl. Opt. 49, F47 (2010).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (2)

2001 (1)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

1972 (1)

R. Gerchberg and W. Saxton, Optik 35, 237 (1972).

Andilla, J.

Curtis, J.

De Cola, L.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Dearing, M.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Denz, C.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Devaux, A.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Di Leonardo, R.

Dufresne, E.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Gerchberg, R.

R. Gerchberg and W. Saxton, Optik 35, 237 (1972).

Gläsener, S.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Grier, D.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Grier, D. G.

Haist, T.

S. Zwick, T. Haist, M. Warber, and W. Osten, Appl. Opt. 49, F47 (2010).
[CrossRef] [PubMed]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

Hörner, F.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Ianni, F.

Ladavac, K.

Lee, S.-H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

Martin-Badosa, E.

McGloin, D.

M. Padgett, J. Molloy, and D. McGloin, eds., Optical Tweezers: Methods and Applications, Series in Optics and Optoelectronics (Taylor and Francis, 2010).
[CrossRef]

Molloy, J.

M. Padgett, J. Molloy, and D. McGloin, eds., Optical Tweezers: Methods and Applications, Series in Optics and Optoelectronics (Taylor and Francis, 2010).
[CrossRef]

Montes-Usategui, M.

Osten, W.

Padgett, M.

M. Padgett, J. Molloy, and D. McGloin, eds., Optical Tweezers: Methods and Applications, Series in Optics and Optoelectronics (Taylor and Francis, 2010).
[CrossRef]

Pleguezuelos, E.

Polin, M.

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

Roichman, Y.

Ruocco, G.

Saxton, W.

R. Gerchberg and W. Saxton, Optik 35, 237 (1972).

Schmitz, C.

Sheets, S.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Spalding, G.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Spatz, J.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

Warber, M.

Woerdemann, M.

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Zwick, S.

Adv. Mater. (1)

M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Adv. Mater. 22, 4176 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, Opt. Commun. 185, 77 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Optik (1)

R. Gerchberg and W. Saxton, Optik 35, 237 (1972).

Rev. Sci. Instrum. (1)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, Rev. Sci. Instrum. 72, 1810 (2001).
[CrossRef]

Other (1)

M. Padgett, J. Molloy, and D. McGloin, eds., Optical Tweezers: Methods and Applications, Series in Optics and Optoelectronics (Taylor and Francis, 2010).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (5260 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Iterative Fourier transform algorithm.

Fig. 2
Fig. 2

Positions of desired traps (circles) and ghost traps (gray dots) for three different initial phase distributions in the IFTA without ghost trap control.

Fig. 3
Fig. 3

Flow chart of the modified amplitude substitution in the image domain with ghost trap control.

Fig. 4
Fig. 4

Intensities relative to the mean intensity of the desired traps in the numerical and optical reconstructions of holograms generated with and without ghost trap control. Positions of desired traps ( T 1 , T 6 ) and ghost traps ( G 1 , G 0 ) exceeding a value of 5% in the optical or numerical reconstruction are indicated in the inset. Nearest neighbor traps have a distance of 10 pixels at the numerical grid and only ghost traps in the area of interest (see text) are shown. The intensity of the zeroth order of diffraction (marked with x) is not shown.

Fig. 5
Fig. 5

(a) Ten particles are stably trapped in six desired and four undesired traps on a symmetrical grid. (b)–(d) By applying the ghost trap control, the particles trapped by ghosts drift away (Media 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B ( p , q ) ( k + 1 ) = A ( p , q ) ( k ) + β ( A ( p , q ) A ( p , q ) ( k ) )     ( p , q ) S

Metrics