Abstract

A high-power diode-cladding-pumped Ho3+-doped fluoride glass fiber laser operating in cascade mode is demonstrated. The I65I75 and I75I85 laser transitions produced 0.77W at a measured slope efficiency of 12.4% and 0.24W at a measured slope efficiency of 5.2%, respectively. Using a long fiber length, which forced a large threshold for the I75I85 transition, a wavelength of 3.002μm was measured at maximum output power, making this system the first watt-level fiber laser operating in the mid-IR.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Standard, ISO 204736: Optics and photonics—spectral bands (2007).
  2. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 34, 3062 (2009).
    [Crossref] [PubMed]
  3. S. D. JacksonOpt. Lett. 29, 334 (2004).
    [Crossref] [PubMed]
  4. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, Opt. Express 14, 678 (2006).
    [Crossref] [PubMed]
  5. C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
    [Crossref]
  6. J. Schneider, C. Carbonnier, and U. B. Unrau, Appl. Opt. 36, 8595 (1997).
    [Crossref]
  7. H. Tobben, Electron. Lett. 28, 1361 (1992).
    [Crossref]
  8. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, Opt. Lett. 36, 1104 (2011).
    [Crossref] [PubMed]
  9. S. D. Jackson, Opt. Lett. 34, 2327 (2009).
    [Crossref] [PubMed]
  10. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
    [Crossref]
  11. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
    [Crossref]
  12. R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
    [Crossref]
  13. J. Schneider, IEEE Photon. Technol. Lett. 7, 354 (1995).
    [Crossref]
  14. T. Sumiyoshi and H. Sekita, Opt. Lett. 23, 1837 (1998).
    [Crossref]
  15. S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
    [Crossref]

2011 (2)

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, Opt. Lett. 36, 1104 (2011).
[Crossref] [PubMed]

S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
[Crossref]

2009 (2)

2007 (1)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

2006 (1)

2004 (1)

1999 (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

1998 (2)

C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[Crossref]

T. Sumiyoshi and H. Sekita, Opt. Lett. 23, 1837 (1998).
[Crossref]

1997 (1)

1995 (1)

J. Schneider, IEEE Photon. Technol. Lett. 7, 354 (1995).
[Crossref]

1993 (1)

R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
[Crossref]

1992 (1)

H. Tobben, Electron. Lett. 28, 1361 (1992).
[Crossref]

Aggarwal, I.

R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
[Crossref]

Allen, R.

R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
[Crossref]

Androz, G.

Arai, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

Bernier, M.

Carbonnier, C.

C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[Crossref]

J. Schneider, C. Carbonnier, and U. B. Unrau, Appl. Opt. 36, 8595 (1997).
[Crossref]

Caron, N.

El-Taher, A. E.

Esterowitz, L.

R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
[Crossref]

Faucher, D.

Gomes, L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Hashida, M.

Ishihara, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

Jackson, S. D.

S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
[Crossref]

S. D. Jackson, Opt. Lett. 34, 2327 (2009).
[Crossref] [PubMed]

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, Opt. Express 14, 678 (2006).
[Crossref] [PubMed]

S. D. JacksonOpt. Lett. 29, 334 (2004).
[Crossref] [PubMed]

Jagosich, F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Kikuchi, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

King, T. A.

Li, J.

S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
[Crossref]

Librantz, A. F. H.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Messaddeq, Y.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Murakami, M.

Poirier, G.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Pollnau, M.

S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
[Crossref]

Ribeiro, S. J. L.

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Sakabe, S.

Sato, S.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

Schneider, J.

Sekita, H.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

T. Sumiyoshi and H. Sekita, Opt. Lett. 23, 1837 (1998).
[Crossref]

Shimizu, S.

Standard, International

International Standard, ISO 204736: Optics and photonics—spectral bands (2007).

Sumiyoshi, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

T. Sumiyoshi and H. Sekita, Opt. Lett. 23, 1837 (1998).
[Crossref]

Tobben, H.

C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[Crossref]

H. Tobben, Electron. Lett. 28, 1361 (1992).
[Crossref]

Tokita, S.

Tsang, Y. H.

Unrau, U. B.

C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[Crossref]

J. Schneider, C. Carbonnier, and U. B. Unrau, Appl. Opt. 36, 8595 (1997).
[Crossref]

Vallee, R.

Appl. Opt. (1)

Electron. Lett. (2)

H. Tobben, Electron. Lett. 28, 1361 (1992).
[Crossref]

C. Carbonnier, H. Tobben, and U. B. Unrau, Electron. Lett. 34, 893 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Allen, L. Esterowitz, and I. Aggarwal, IEEE J. Quantum Electron. 29, 303 (1993).
[Crossref]

S. D. Jackson, M. Pollnau, and J. Li, IEEE J. Quantum Electron. 47, 471 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Schneider, IEEE Photon. Technol. Lett. 7, 354 (1995).
[Crossref]

J. Appl. Phys. (1)

A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Other (1)

International Standard, ISO 204736: Optics and photonics—spectral bands (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified energy-level diagram for a Ho 3 + -doped cascade ZBLAN fiber laser showing the pump, laser, and energy transfer upconversion processes.

Fig. 2
Fig. 2

Experimental setup of the Ho 3 + -doped cascade ZBLAN laser that used a dichroic mirror for unidirectional output. pbs represents polarizing beam splitter and D1–D4 represent the four pump diodes.

Fig. 3
Fig. 3

Measured output power, P out , from the two laser transitions as a function of the launched pump power, P L , for the cavity arrangement that employed either Fresnel reflection from the ends of the fiber or the dichroic mirror.

Fig. 4
Fig. 4

Measured spectrum of the I 6 5 I 7 5 laser transition at maximum pump power for both resonator arrangements. The inset shows the measured spectrum for the I 7 5 I 8 5 laser transition at maximum pump power for both resonator arrangements.

Fig. 5
Fig. 5

Measured center wavelength (λ) of the output from the I 6 5 I 7 5 transition as a function of the launched pump power, P L . The inset shows the temporal stability of the fiber laser output power at the maximum launched pump power.

Metrics