Abstract

In the application of a nematic liquid-crystal (LC) spatial light modulator, we derived the formula of retardation dynamic response of the device by solving the Erickson–Leslie equation. Then, the response time of the 2π phase change can be expressed as a function of the LC cell gap. The theoretical and experimental results all indicate that the response time of 2π first decreases and then increases with the LC cell gap increasing, and there is an optimal cell gap to obtain the shortest response time. Therefore, the method of optimizing the cell gap shows potential to improve the switching frequency for all type of nematic LC optical device with specific modulation quantity.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Complex amplitude modulation by use of liquid-crystal spatial light modulators

J. L. de Bougrenet de la Tocnaye and L. Dupont
Appl. Opt. 36(8) 1730-1741 (1997)

Near-lossless continuous phase modulation using the analog switching mode (V-shaped switching) in ferroelectric liquid crystals

David Engström, Per Rudquist, Jörgen Bengtsson, Koen D'havé, and Sheila Galt
Appl. Opt. 45(21) 5258-5269 (2006)

High speed liquid crystal over silicon display based on the flexoelectro-optic effect

Jing Chen, Stephen M. Morris, Timothy D. Wilkinson, Jon P. Freeman, and Harry J. Coles
Opt. Express 17(9) 7130-7137 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription