Abstract

We demonstrate an ultrasensitive refractive-index (RI) sensor utilizing the polarimetric interference of a rectangular silica microfiber. The measured sensitivity is as high as 18,987nm/RIU (refractive-index unit) around the RI of 1.33, which is 1 order of magnitude higher than that of the previously reported microfiber devices. Theoretical analysis reveals that such high sensitivity not only is originated from the RI-induced birefringence variation but also relies on the unique birefringence dispersion property for the rectangular microfiber. We predict that the sensitivity can be enhanced significantly when the group birefringence approaches zero.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011).
    [Crossref]
  2. P. Pilla, P. F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano, Opt. Express 17, 20039 (2009).
    [Crossref] [PubMed]
  3. Z. L. Ran, Y. J. Rao, J. Zhang, Z. W. Liu, and B. Xu, J. Lightwave Technol. 27, 3143 (2009).
    [Crossref]
  4. C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
    [Crossref]
  5. Q. Wu, Y. Semenova, P. F. Wang, and G. Farrell, Opt. Express 19, 7937 (2011).
    [Crossref] [PubMed]
  6. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, Opt. Lett. 36, 852 (2011).
    [Crossref] [PubMed]
  7. L. Rindorf and O. Bang, Opt. Lett. 33, 563 (2008).
    [Crossref] [PubMed]
  8. M. H. Frosz, A. Stefani, and O. Bang, Opt. Express 19, 10471 (2011).
    [Crossref] [PubMed]
  9. L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [Crossref] [PubMed]
  10. G. Brambilla, J. Opt. 12, 043001 (2010).
    [Crossref]
  11. X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
    [Crossref] [PubMed]
  12. H. F. Xuan, W. Jin, and M. Zhang, Opt. Express 17, 21882(2009).
    [Crossref] [PubMed]
  13. Y. M. Jung, G. Brambilla, K. Oh, and D. J. Richardson, Opt. Lett. 35, 378 (2010).
    [Crossref] [PubMed]
  14. H. F. Xuan, J. Ju, and W. Jin, Opt. Express 18, 3828 (2010).
    [Crossref] [PubMed]
  15. Y. G. Liu, B. Liu, X. F. Feng, W. G. Zhang, G. Zhou, S. Z. Yuan, G. Y. Kai, and X. Y. Dong, Appl. Opt. 44, 2382 (2005).
    [Crossref] [PubMed]
  16. K. F. Palmer and D. Williams, J. Opt. Soc. Am. 64, 1107(1974).
    [Crossref]
  17. M. Koshiba and Y. Tsuji, J. Lightwave Technol. 18, 737 (2000).
    [Crossref]
  18. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

2011 (4)

2010 (5)

2009 (3)

2008 (1)

2005 (1)

2003 (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

2000 (1)

1974 (1)

Ambrosio, L.

Ashcom, J. A.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Bang, O.

Bass, M.

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Brambilla, G.

Buosciolo, A.

Campopiano, S.

Chung, T.

S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011).
[Crossref]

Cusano, A.

Cutolo, A.

Dong, X. Y.

Fang, X.

Farrell, G.

Feng, X. F.

Frazão, O.

Frosz, M. H.

Gattas, R. G.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Giordano, M.

He, S.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Jin, W.

Ju, J.

Jung, Y. M.

Kai, G. Y.

Kobelke, J.

Koshiba, M.

Lee, B.

S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011).
[Crossref]

Liao, C. R.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[Crossref]

X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
[Crossref] [PubMed]

Liu, B.

Liu, Y. G.

Liu, Z. W.

Lou, J.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Malachovska, V.

Malcata, F. X.

Manzillo, P. F.

Maxwell, I.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Oh, K.

Palmer, K. F.

Pilla, P.

Ran, Z. L.

Rao, Y. J.

Richardson, D. J.

Rindorf, L.

Roh, S.

S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011).
[Crossref]

Santos, J. L.

Schuster, K.

Semenova, Y.

Shen, M.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Silva, S.

Stefani, A.

Tong, L.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Tsuji, Y.

Wang, D. N.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[Crossref]

X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
[Crossref] [PubMed]

Wang, P. F.

Wang, Y.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[Crossref]

Williams, D.

Wu, Q.

Xu, B.

Xuan, H. F.

Yang, M. W.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[Crossref]

Yuan, S. Z.

Zhang, J.

Zhang, M.

Zhang, W. G.

Zhou, G.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

G. Brambilla, J. Opt. 12, 043001 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Sensors (1)

S. Roh, T. Chung, and B. Lee, Sensors 11, 1565 (2011).
[Crossref]

Other (1)

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional fiber images with different fiber widths observed by the use of a CCD camera.

Fig. 2
Fig. 2

(a) Schematic of the RI sensor based on our rectangular microfiber. (b) Typical transmission spectra for the microfiber placed in air and aqueous liquid, respectively.

Fig. 3
Fig. 3

Measured (circles) and modeled (curves) wavelengths at transmission dips versus external RI. The inset indicates our theoretical model with the fundamental mode field profile for a = 3.29 μm .

Fig. 4
Fig. 4

Modeled sensitivity as a function of the fiber width a at 1550 nm . The measured point for our experiment is marked.

Tables (1)

Tables Icon

Table 1 Typical Sensitivities Experimentally Obtained around n = 1.33 for RI Fiber Sensing Schemes in the Literature as Compared with Our Rectangular Microfiber

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ = ( 2 π / λ ) B L ,
S = d λ d n = λ · B / n B λ B / λ = λ G B n ,

Metrics