Abstract

We propose and experimentally demonstrate a novel design for temporal integration of microwave and optical intensity waveforms with combined high processing speed and a long operation time window. It is based on concatenating in series a discrete-time (low-speed) photonic integrator and a high-speed analog time-limited intensity integrator. This scheme is demonstrated here using a cascaded fiber-based interferometers’ system (as a passive eight-point discrete-time integrator) and an analog time-limited intensity integrator. The latter is based on temporal intensity modulation of the input waveform with a rectangular-like incoherent energy spectrum followed by linear dispersion. Using this setup, we experimentally achieve accurate time integration of intensity signals with 36GHz bandwidths over an operation time window of 4ns, corresponding to a processing time- bandwidth product of >144.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  2. Y. Park, T. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express 16, 17817 (2008).
    [CrossRef] [PubMed]
  3. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
    [CrossRef] [PubMed]
  4. N. Q. Ngo and L. N. Binh, J. Lightwave Technol. 24, 563 (2006).
    [CrossRef]
  5. N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
    [CrossRef]
  6. Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
    [CrossRef]
  7. Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
    [CrossRef]
  8. Y. Park and J. Azaña, Opt. Lett. 34, 1156 (2009).
    [CrossRef] [PubMed]
  9. C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
    [CrossRef]
  10. M. H. Asghari, Y. Park, and J. Azaña, Opt. Express 19, 425 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

Y. Park, T. Ahn, Y. Dai, J. Yao, and J. Azaña, Opt. Express 16, 17817 (2008).
[CrossRef] [PubMed]

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

2006 (2)

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
[CrossRef]

N. Q. Ngo and L. N. Binh, J. Lightwave Technol. 24, 563 (2006).
[CrossRef]

1995 (1)

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Ahn, T.

Asghari, M. H.

Azaña, J.

Binh, L. N.

Chu, S. T.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Costanzo-Caso, P.

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Dai, Y.

Ding, Y.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

Ferrera, M.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Granieri, S.

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Hsue, C.-W.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
[CrossRef]

Huang, D.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

Jin, Y.

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Little, B. E.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Morandotti, R.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Moss, D. J.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Nawab, S. H.

A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Nawab, S. N.

A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Ngo, N. Q.

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Park, Y.

Razzari, L.

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Siahmakoun, A.

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Tsai, L.-C.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
[CrossRef]

Tsai, Y.-H.

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
[CrossRef]

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Yao, J.

Zhang, X.-B.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

Zhang, X.-L.

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C.-W. Hsue, L.-C. Tsai, and Y.-H. Tsai, IEEE Trans. Microw. Theory Tech. 54, 1043 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Commun. (1)

M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, Nat. Commun. 129 (2010).
[CrossRef] [PubMed]

Opt. Commun. (2)

N. Q. Ngo and L. N. Binh, Opt. Commun. 119, 390 (1995).
[CrossRef]

Y. Ding, X.-B. Zhang, X.-L. Zhang, and D. Huang, Opt. Commun. 281, 5315 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, Proc. SPIE 7797, 77970J (2010).
[CrossRef]

Other (1)

A. V. Oppenheim, A. S. Willsky, S. N. Nawab, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual diagram of the proposed ultrafast photonic intensity integrator design through illustration of its temporal impulse response.

Fig. 2
Fig. 2

Experimental setup for the proof-of-concept demonstration of the proposed photonic intensity integrator design. The energy spectrum of the incoherent light source is shown in the inset.

Fig. 3
Fig. 3

(a) Measured impulse response (arbitrary units, a.u.) of the original (dashed line) and proposed (solid line) photonic intensity integrator. The ideal output is plotted with circles. (b) Frequency transfer function of the demonstrated new photonic intensity integrator (solid line) compared to an ideal photonic intensity integrator with operation time window of 4 ns (circles).

Fig. 4
Fig. 4

Measured temporal response (solid lines) of the proposed photonic intensity integrator to (a) an intensity double pulse and (b) a microwave signal with quadratic chirp (dotted lines). Ideal outputs are plotted with circles.

Metrics