Abstract

We present thermally regenerated fiber Bragg gratings in air-hole microstructured fibers for high-temperature, hydrostatic pressure measurements. High-temperature stable gratings were regenerated during an 800°C annealing process from hydrogen-loaded Type I seed gratings. The wavelength shifts and separation of grating peaks were studied as functions of external hydrostatic pressure from 15 to 2400psi, and temperature from 24°C to 800°C. This Letter demonstrates a multiplexible pressure and temperature sensor technology for high-temperature environments using a single optical fiber feedthrough.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
    [CrossRef]
  2. K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263(1997).
    [CrossRef]
  3. M. Fokine, J. Opt. Soc. Am. B 19, 1759 (2002).
    [CrossRef]
  4. D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
    [CrossRef]
  5. C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, Opt. Lett. 35, 1443 (2010).
    [CrossRef] [PubMed]
  6. B. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
    [CrossRef]
  7. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008).
    [CrossRef] [PubMed]
  8. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, Opt. Express 19, 1198 (2011).
    [CrossRef] [PubMed]
  9. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, Sensors 8, 6448 (2008).
    [CrossRef]
  10. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, Appl. Opt. 50, 2519 (2011).
    [CrossRef] [PubMed]

2011

2010

2008

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008).
[CrossRef] [PubMed]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, Sensors 8, 6448 (2008).
[CrossRef]

2007

B. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

2006

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

2002

1997

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263(1997).
[CrossRef]

Bandyopadhyay, S.

Bartelt, H.

Becker, M.

Biswas, P.

Brückner, S.

Canning, J.

Chen, K. P.

Chojetzki, C.

Cook, K.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, Sensors 8, 6448 (2008).
[CrossRef]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, Opt. Lett. 33, 1917 (2008).
[CrossRef] [PubMed]

Dasgupta, K.

Fokine, M.

Grobnic, D.

C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, Opt. Lett. 35, 1443 (2010).
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263(1997).
[CrossRef]

Jewart, C. M.

Kahrizi, M.

B. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Lally, E.

J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
[CrossRef]

Lindner, E.

Meltz, G.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263(1997).
[CrossRef]

Mihailov, S. J.

Miharlov, S. J.

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

Rothhardt, M.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

Stevenson, M.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

Wang, A.

J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
[CrossRef]

Wang, Q.

Xu, Y.

J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
[CrossRef]

Yi, J.

J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
[CrossRef]

Zhang, B.

B. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

J. Yi, E. Lally, A. Wang, and Y. Xu, IEEE Photon. Technol. Lett. 23, 9 (2011).
[CrossRef]

IEEE Sens. J.

B. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

J. Lightwave Technol.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263(1997).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

D. Grobnic, C. W. Smelser, S. J. Miharlov, and R. B. Walker, Meas. Sci. Technol. 17, 1009 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Sensors

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, Sensors 8, 6448 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of (a) grating reflection spectra and (b) grating strength and resonate wavelength during the regeneration at 800 ° C . Insets, microscopic cross-section image of the twin-hole fiber, and transmission and reflection of the seed and regenerated gratings.

Fig. 2
Fig. 2

Wavelength shift of the regenerated grating with respect to the change of temperature. Inset, grating reflection spectra at 24, 400, 500, 600, 700, and 800 ° C .

Fig. 3
Fig. 3

Pressure response of the regenerated grating at 800 ° C : black, room pressure of 15 psi ; red, 2400 psi .

Fig. 4
Fig. 4

Sensor responses versus (a) pressure from 15 to 2400 psi at 800 ° C ; (b) temperature from 24 ° C to 800 ° C under pressure of 2400 psi .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( Δ λ o , e ) = ( λ o , e / T ) Δ T + ( λ o , e / P + ( 2 λ o , e / T P ) Δ T ) Δ P ,
λ o , e / T = 1.518 × 10 4 ( nm / C )
( λ o / P λ e / P ) = ( 2.521 × 10 4 3.526 × 10 4 ) ( nm / psi ) ,
( 2 λ o / T P 2 λ e / T P ) = ( 9.185 × 10 8 1.232 × 10 7 ) ( nm / psi / ° C ) ,

Metrics