Abstract

We have investigated the heat generation from gold nanoparticles resulting from their local plasma resonance. We have demonstrated the self-assembly of Au nanoparticle arrays/dielectric layer/Ag mirror sandwiches, i.e., a local plasmon resonator, using a dynamic oblique deposition technique. The thicknesses of the Au and dielectric layers were changed combinatorially on a single substrate. As a result, local plasmon resonator chips were successfully fabricated. Because of strong interference, their optical absorption can be controlled between 0.0% and 97% in the near-IR region, depending on the thickness of the dielectric layer. We evaluated the heat generation from Au nanoparticles by measuring the temperature of water with which a cell prepared on a chip is filled under laser illumination. The change in the water temperature is proportional to the optical absorption of the local plasmon resonator chips. This suggests that the photothermal conversion efficiency can be controlled by interference. These features make the application of the local plasmon resonator to nanoheaters, which can spatiotemporally control heat generation, suitable.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O. Govorova and H. H. Richardson, Nano Today 2, 30 (2007).
    [CrossRef]
  2. G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
    [CrossRef]
  3. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
    [CrossRef]
  4. M. Krishman, J. Park, and D. Erickson, Opt. Lett. 34, 1976 (2009).
    [CrossRef]
  5. Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
    [CrossRef]
  6. B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  7. J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
    [CrossRef]
  8. M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
    [CrossRef]
  9. M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
    [CrossRef]

2011 (1)

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

2010 (1)

G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
[CrossRef]

2009 (3)

M. Krishman, J. Park, and D. Erickson, Opt. Lett. 34, 1976 (2009).
[CrossRef]

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

2008 (1)

B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

2007 (2)

A. O. Govorova and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

2006 (1)

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Auguié, B.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Barnes, W. L.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Burrows, C. P.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

Erickson, D.

Fukuoka, T.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Govorova, A. O.

A. O. Govorova and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Guo, L. J.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Hayasaka, T.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Hendry, E.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

Hou, Y.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Imai, Y.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Kim, J.-S.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Kimura, K.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Krishman, M.

Kumagai, S.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Mori, Y.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Nakajima, K.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

O’Donnel, M.

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

Park, J.

Parsons, J.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Richardson, H. H.

A. O. Govorova and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Sambles, J. R.

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

Sasaki, K.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Suzuki, M.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Takada, A.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Takahashi, E.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Tokunaga, H.

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

Yamada, T.

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Hou, J.-S. Kim, M. O’Donnel, and L. J. Guo, Appl. Phys. Lett. 89, 093901 (2006).
[CrossRef]

J. Nanophoton. (2)

M. Suzuki, Y. Imai, H. Tokunaga, K. Nakajima, K. Kimura, T. Fukuoka, and Y. Mori, J. Nanophoton. 3, 031502 (2009).
[CrossRef]

M. Suzuki, A. Takada, T. Yamada, T. Hayasaka, K. Sasaki, E. Takahashi, and S. Kumagai, J. Nanophoton. 5, 051501(2011).
[CrossRef]

Nano Today (1)

A. O. Govorova and H. H. Richardson, Nano Today 2, 30 (2007).
[CrossRef]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles, and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, Phys. Rev. B 82, 165424 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic drawing of the side view and SEM images of (b) cross section and (c) surface morphology of the local plasmon resonator that has the Au nanoparticle arrays/SCL/PCL/Ag mirror structure.

Fig. 2
Fig. 2

Spectrum comparison of local plasmon resonator chips whose PCL thicknesses are h PCL = 80 and 220 nm .

Fig. 3
Fig. 3

Photothermal properties of local plasmon resonators. (a) Trace of the temperature increase of the water in the cell. Both measured and calculated (solid curves) distributions are shown. (b) The temperature increase of the water in the cell at equilibrium as a function of the optical absorbance. The solid line represents a linear fit, where Q = 8.4 ( mW / K ) .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d T d t = 1 C M ( A I Q ( T T 0 ) ) .
T T 0 = A I Q ( 1 e Q C M t ) ,

Metrics