Abstract

A novel on-axis one-element polarization-independent light in- and out-coupling mechanism for surface plasmon resonance (SPR) is proposed. The system utilizes an integrated high-NA concentric chirped grating to both focus the incident light on the metallic film and collimate the reflected beam onto a CCD array to extract the SPR signal. With NA up to 1.47, a broad sensing dynamic range from n=1 to 1.35 can be achieved. An analytical model is implemented to demonstrate the dependency of the radial location of the resonances on the detecting substance and its sensitivity to the change of the refractive index. The model shows a trend similar to rigorous ray-tracing calculations.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness

Kyung Min Byun, Soon Joon Yoon, Donghyun Kim, and Sung June Kim
J. Opt. Soc. Am. A 24(2) 522-529 (2007)

Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings

Kyung Min Byun, Sung June Kim, and Donghyun Kim
Appl. Opt. 46(23) 5703-5708 (2007)

Nanorod-mediated surface plasmon resonance sensor based on effective medium theory

Junxue Fu, Bosoon Park, and Yiping Zhao
Appl. Opt. 48(23) 4637-4649 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription