Abstract

A Mach–Zehnder structure with modulation in one arm and dispersive time delay in the other is proposed to implement highly flexible single-bandpass chirped microwave photonic filters based on broadband optical sources. Both the amplitude response and the time delay slope can be fully reconfigured via control of the optical spectra and dispersion. The passband can also be widely tuned without changing the shape. A chirped filter with a bandwidth of 4GHz, a delay slope of 0.6ns/GHz, and a tunability up to 40GHz is demonstrated experimentally.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  2. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
    [CrossRef]
  3. J. Capmany, J. Mora, B. Ortega, and D. Pastor, Opt. Lett. 30, 2299 (2005).
    [CrossRef] [PubMed]
  4. X. Yi and R. A. Minasian, J. Lightwave Technol. 26, 2578 (2008).
    [CrossRef]
  5. T. X. H. Huang, X. Yi, and R. A. Minasian, Opt. Express 19, 6231 (2011).
    [CrossRef] [PubMed]
  6. S. Xiao and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 54, 4002 (2006).
    [CrossRef]
  7. H. D. Meikle, in Modern Radar Systems(Artech House, 2008), Chap. 3.
  8. M. Miyakawa, Med. Bio. Eng. Comput. 31, S31 (1993).
    [CrossRef]
  9. R. A. Scholtz, IEEE Trans. on Commun. 30, 822 (1982).
    [CrossRef]
  10. Y. Dai and J. Yao, IEEE Photon. Technol. Lett. 21, 569(2009).
    [CrossRef]
  11. M. Bolea, J. Mora, B. Ortega, and J. Capmany, Opt. Express 19, 4566 (2011).
    [CrossRef] [PubMed]
  12. J. Mora, A. Ortigosa-Blanch, D. Pastor, and J. Capmany, Opt. Express 14, 7960 (2006).
    [CrossRef] [PubMed]
  13. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
    [CrossRef]
  14. E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.
  15. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

2011 (2)

2010 (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

2009 (1)

Y. Dai and J. Yao, IEEE Photon. Technol. Lett. 21, 569(2009).
[CrossRef]

2008 (1)

2006 (4)

J. Mora, A. Ortigosa-Blanch, D. Pastor, and J. Capmany, Opt. Express 14, 7960 (2006).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

S. Xiao and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 54, 4002 (2006).
[CrossRef]

2005 (1)

1993 (1)

M. Miyakawa, Med. Bio. Eng. Comput. 31, S31 (1993).
[CrossRef]

1982 (1)

R. A. Scholtz, IEEE Trans. on Commun. 30, 822 (1982).
[CrossRef]

Bolea, M.

Capmany, J.

Dai, Y.

Y. Dai and J. Yao, IEEE Photon. Technol. Lett. 21, 569(2009).
[CrossRef]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Huang, T. X. H.

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Long, C. M.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Meikle, H. D.

H. D. Meikle, in Modern Radar Systems(Artech House, 2008), Chap. 3.

Minasian, R. A.

Miyakawa, M.

M. Miyakawa, Med. Bio. Eng. Comput. 31, S31 (1993).
[CrossRef]

Mora, J.

Ortega, B.

Ortigosa-Blanch, A.

Pastor, D.

Scholtz, R. A.

R. A. Scholtz, IEEE Trans. on Commun. 30, 822 (1982).
[CrossRef]

Supradeepa, V. R.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

S. Xiao and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 54, 4002 (2006).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Wu, R.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

Xiao, S.

S. Xiao and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 54, 4002 (2006).
[CrossRef]

Xue, X.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

Yao, J.

Y. Dai and J. Yao, IEEE Photon. Technol. Lett. 21, 569(2009).
[CrossRef]

Yi, X.

Zhang, H.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

Zheng, X.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

Zhou, B.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

IEEE Photon. Technol. Lett. (1)

Y. Dai and J. Yao, IEEE Photon. Technol. Lett. 21, 569(2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

S. Xiao and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 54, 4002 (2006).
[CrossRef]

IEEE Trans. on Commun. (1)

R. A. Scholtz, IEEE Trans. on Commun. 30, 822 (1982).
[CrossRef]

J. Lightwave Technol. (2)

Med. Bio. Eng. Comput. (1)

M. Miyakawa, Med. Bio. Eng. Comput. 31, S31 (1993).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (3)

H. D. Meikle, in Modern Radar Systems(Artech House, 2008), Chap. 3.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October 5–9, 2010.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source,” Opt. Express (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the tunable chirped filter. EDFA, erbium-doped fiber amplifier; PC, polarization controller; CFG, chirped fiber grating; EOM, electro-optical modulator; VDL, variable delay line; DCF, dispersion-compensating fiber.

Fig. 2
Fig. 2

Reflectivity (blue) and group delay (orange) of the chirped fiber grating.

Fig. 3
Fig. 3

Optical spectra after the dispersive Mach–Zehnder structure.

Fig. 4
Fig. 4

Ampitude response (blue) and time delay (orange) of the chirped filter tuned at (a)  8 GHz , (b)  20 GHz , and (c)  32 GHz .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T DMZI ( Ω ) = 1 + cos [ Ω Δ τ + β 21 ( Ω Ω 0 ) 2 / 2 ] ,
H ( ω ) 0 + N ( Ω ) cos [ Ω Δ τ + β 21 ( Ω Ω 0 ) 2 / 2 ] × exp [ j ω β 22 ( Ω Ω 0 ) ] d Ω ,
f ( t ) = ( β 21 t / β 22 2 + Δ τ / β 22 ) / 2 π ,
D e = 2 π β 22 2 / β 21 ,
| H ( ω ) | N ( β 22 ω / β 21 Δ τ / β 21 + Ω 0 ) .
f c = Δ τ / ( 2 π β 22 ) ,
B e = | β 21 / β 22 | B o ,

Metrics