Abstract

We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic, 2008).
    [PubMed]
  2. T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, Opt. Express 14, 7943 (2006).
    [CrossRef] [PubMed]
  3. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
    [CrossRef] [PubMed]
  4. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, Adv. Mater. 22, 356 (2010).
    [CrossRef] [PubMed]
  5. M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
    [CrossRef]
  6. Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
    [CrossRef]
  7. L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
    [CrossRef]
  8. S. Jia and J. W. Fleischer, Phys. Rev. A 79, 041804 (2009).
    [CrossRef]
  9. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Lett. 33, 198 (2008).
    [CrossRef] [PubMed]
  10. B. Terhalle, D. Göries, T. Richter, P. Rose, A. S. Desyatnikov, F. Kaiser, and C. Denz, Opt. Lett. 35, 604(2010).
    [CrossRef] [PubMed]
  11. J. Xavier, and J. Joseph, Opt. Lett. 36, 403 (2011).
    [CrossRef] [PubMed]
  12. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
    [CrossRef] [PubMed]
  13. G. Indbetouw, J. Mod. Opt. 40, 73 (1993).
    [CrossRef]
  14. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
    [CrossRef]
  15. I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164(1994).
    [CrossRef] [PubMed]
  16. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
    [CrossRef]

2011 (2)

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

J. Xavier, and J. Joseph, Opt. Lett. 36, 403 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (4)

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, Opt. Lett. 34, 2625 (2009).
[CrossRef] [PubMed]

L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
[CrossRef]

S. Jia and J. W. Fleischer, Phys. Rev. A 79, 041804 (2009).
[CrossRef]

2008 (1)

2006 (1)

2005 (2)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
[CrossRef]

2001 (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

1994 (1)

I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164(1994).
[CrossRef] [PubMed]

1993 (1)

G. Indbetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

Andrews, D. L.

D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic, 2008).
[PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Boguslawski, M.

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, Adv. Mater. 22, 356 (2010).
[CrossRef] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Buccoliero, D.

Chen, Y. F.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

Courtial, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

Dennis, M. R.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

Denz, C.

Desyatnikov, A. S.

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Fleischer, J. W.

S. Jia and J. W. Fleischer, Phys. Rev. A 79, 041804 (2009).
[CrossRef]

Freund, I.

I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164(1994).
[CrossRef] [PubMed]

Göries, D.

Huang, K. F.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

Indbetouw, G.

G. Indbetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

Jia, S.

S. Jia and J. W. Fleischer, Phys. Rev. A 79, 041804 (2009).
[CrossRef]

Joseph, J.

Juodkazis, S.

Kaiser, F.

Kivshar, Y. S.

Kondo, T.

Krolikowski, W.

Leach, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

Liang, H. C.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

Lin, Y. C.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Misawa, H.

Mizeikis, V.

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Richter, T.

Rose, P.

Schimmel, H.

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
[CrossRef]

Senthilkumaran, P.

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
[CrossRef]

Shvartsman, N.

I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164(1994).
[CrossRef] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Su, K. W.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

Terhalle, B.

Tzeng, Y. S.

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

Wang, L. G.

L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
[CrossRef]

Wang, L. Q.

L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
[CrossRef]

Wyrowski, F.

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
[CrossRef]

Xavier, J.

Zhu, S. Y.

L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
[CrossRef]

Adv. Mater. (1)

J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, Adv. Mater. 22, 356 (2010).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

G. Indbetouw, J. Mod. Opt. 40, 73 (1993).
[CrossRef]

New J. Phys. (1)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J. Phys. 7, 55 (2005).
[CrossRef]

Opt. Commun. (1)

L. G. Wang, L. Q. Wang, and S. Y. Zhu, Opt. Commun. 282, 1088 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Senthilkumaran, F. Wyrowski, and H. Schimmel, Opt. Lasers Eng. 43, 43 (2005).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (3)

S. Jia and J. W. Fleischer, Phys. Rev. A 79, 041804 (2009).
[CrossRef]

Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, Phys. Rev. A 83, 053813 (2011).
[CrossRef]

I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164(1994).
[CrossRef] [PubMed]

Prog. Opt. (1)

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53, 293 (2009).
[CrossRef]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, Science 292, 912 (2001).
[CrossRef] [PubMed]

Other (1)

D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic, 2008).
[PubMed]

Supplementary Material (2)

» Media 1: MPG (1868 KB)     
» Media 2: MPG (3175 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) 3D intensity distribution of transversely 12-fold symmetry spiraling TVS by 12 + 1 interfering beams. Media 1 (b)  x - y plane of the structure while TVS lattice-forming wave is superposed with a spherical wave. (c) and (d) Respectively for ( p = 3 , q = 2 ) TVS by 21 + 1 interfering beams. Media 2

Fig. 2
Fig. 2

Computer analysis of ( p = 3 , q = 2 ) TVS. Left column: folded structure. Right column: unfolded structure. (a)–(b) Intensity distribution in x - y plane (Inset: Distribution with a lower threshold value). (c)–(d) Zero crossing: Zeros of Re E ( r ) [blue] and Im E ( r ) [green] (Inset: Phase profile). (e)–(f) Intensity mesh plots.

Fig. 3
Fig. 3

Experimental realization of TVS. (a)  x - y plane of the intensity profile of transversely 12-fold symmetry spiraling TVS. (b) For ( p = 3 , q = 2 ) TVS. (c)–(d) Spiraling structures of (a) and (b) as z value is varied. (e) Recorded image of the x - y plane of the real lattice of (b) fabricated in SBN:Ce PR material (Inset: Far field diffraction pattern).

Fig. 4
Fig. 4

The fork formation while the TVS lattice-forming wave is interfered with a plane wave launched at a large angle from the axis. (a) and (c): folded, (b) and (d): unfolded. (a)–(b): Transversely 12-fold symmetry TVS. (c)–(d): ( p = 3 , q = 2 ) TVS.

Fig. 5
Fig. 5

Computational and experimental analysis of ( p = 6 , q = 4 ) TVS. (a) 3D intensity distribution (Inset: Phase profile). (b) Zero crossing plot: Zeros of Re E ( r ) [Blue] and Im E ( r ) [Green] (Inset: For the folded structure). (c) Intensity mesh plot. (d) Experimentally realized intensity distribution of ( p = 6 , q = 4 ) TVS x - y plane (Inset: The fork formation).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( r , ψ , z = 0 ) = E 0 E BG ( r ) j = 1 N A ( r j ) e i k z e i l j ψ j ,
I ( r ) = i = 0 g | E i | 2 + i = 0 g j = 0 g j i E i E j * · exp [ ( k i k j ) · r + i φ i j ] ,

Metrics