Abstract

We report on an experimental demonstration of linear precompensation of nonlinear phase and amplitude transfer functions. We show the effective compensation with a linear all-fiber system of phase-to-amplitude modulation conversion due to a complete frequency conversion system including plane gratings and a nonlinear crystal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Karazys, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, J. Opt. Soc. Am. B 6, 2402 (1989).
    [CrossRef]
  2. J. Garnier, L. Videau, C. Gouédard, and A. Migus, J. Opt. Soc. Am. A 14, 1928 (1997).
    [CrossRef]
  3. S. Hocquet, D. Penninckx, E. Bordenave, C. Gouédard, and Y. Jaouën, Appl. Opt. 47, 3338 (2008).
    [CrossRef] [PubMed]
  4. J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
    [CrossRef]
  5. X. Dangpeng, W. Jianjun, L. Mingzhong, L. Honghuan, Z. Rui, D. Ying, D. Qinghua, H. Xiaodong, W. Mingzhe, D. Lei, and T. Jun, Opt. Express 18, 6621 (2010).
    [CrossRef] [PubMed]
  6. J. Li, H. Lin, F. Jing, D. Xu, Z. Huang, Y. Deng, Y. Geng, M. Li, R. Zhang, N. Zhu, and J. Wang, Opt. Lett. 36, 1053 (2011).
    [CrossRef] [PubMed]
  7. Y. Yang, B. Feng, W. Han, W. Zheng, F. Li, and J. Tan, Opt. Lett. 34, 3848 (2009).
    [CrossRef] [PubMed]
  8. Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
    [CrossRef]
  9. W. Wang, W. Han, F. Wang, J. Wang, L. Zhou, H. Jia, Y. Xiang, K. Li, F. Li, L. Wang, W. Zhong, X. Zhang, S. Zhao, and B. Feng, J. Opt. Soc. Am. B 28, 475 (2011).
    [CrossRef]
  10. S. Hocquet, G. Lacroix, and D. Penninckx, Appl. Opt. 48, 2515 (2009).
    [CrossRef] [PubMed]
  11. S. Vidal, J. Luce, and D. Penninckx, Opt. Lett. 36, 88 (2010).
    [CrossRef]
  12. R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
    [CrossRef]
  13. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

2011 (2)

2010 (3)

2009 (2)

2008 (1)

1999 (1)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

1997 (1)

1990 (1)

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

1989 (1)

Bordenave, E.

Browning, D. F.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Chen, Y.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Dangpeng, X.

Deng, Y.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Ehrlich, R. B.

Fan, D.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Feng,

Feng, B.

Garnier, J.

Geng, Y.

Gouédard, C.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Han, W.

Hocquet, S.

Honghuan, L.

Huang, Z.

Jaouën, Y.

Jia, H.

Jianjun, W.

Jing, F.

Jun, T.

Karazys, D. T.

Lacroix, G.

Lei, D.

Li, F.

Li, J.

Li, K.

Li, M.

Lin, H.

Luce, J.

Migus, A.

Mingzhe, W.

Mingzhong, L.

Murray, J. R.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Penninckx, D.

Qian, L.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Qinghua, D.

Rothenberg, J. E.

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Rui, Z.

Short, R. W.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Skupsky, S.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Smith, J. R.

Tan, J.

Thompson, C. E.

Vidal, S.

Videau, L.

Wang, F.

Wang, J.

Wang, L.

Wang, W.

Weiland, T. L.

Wilcox, R. B.

Xiang, Y.

Xiaodong, H.

Xu, D.

Yang, Y.

Ying, D.

Yuan, P.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Zhang, R.

Zhang, X.

Zhao, S.

Zheng, W.

Zhong, W.

Zhou, L.

Zhu, H.

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Zhu, N.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

Y. Chen, P. Yuan, L. Qian, H. Zhu, and D. Fan, Opt. Commun. 283, 2737 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

J. E. Rothenberg, D. F. Browning, and R. B. Wilcox, Proc. SPIE 3492, 51 (1999).
[CrossRef]

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup. PMF, polarization maintaining fiber; EOM, electro-optic modulator; λ / 2 , half-wave plate.

Fig. 2
Fig. 2

Experimental measurements (zoom on 1 ns ) of FM-to-AM conversion due to (a) a unique 5 - mm -thick KTP crystal, (b) propagation of the fundamental wave between the two gratings, and (c) complete FCS. (d) Compensation of FM-to-AM conversion with the all-fiber system. Figures (e), (f), (g), and (h) correspond to the simulations of (a), (b), (c), and (d), respectively. Figures (i), (j), (k), and (l), respectively, represent the spectrum of AMs for the four measurements.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H KTP , 2 f ( f ) = sinc [ A f γ ] ,
H G , 1 f ( f ) = exp [ i 2 φ f 2 ] ,
φ = 2 π c N 2 x f 0 3 cos 2 ϑ 0 ,
α G ( 2 f 0 , x ) = β α ( 1 f 0 , x 1 ) + α ( 2 f 0 , x 2 ) ,
α ( 1 f 0 , x 1 ) = α ( 2 f 0 , x 2 ) = 2 | φ / 2 | m f m 2 .
α FCS = α KTP + G 2 + α G 2 ( 2 f 0 , x ) .
H comp , G ( f ) = exp [ i π λ 0 2 LD c f 2 ] = exp [ i φ comp 2 f 2 ] ,
φ comp = 2 π c N 2 f 0 3 cos 2 ϑ 0 ( x 1 + x 2 β ) ,
H comp , KTP ( f ) = ( cos 2 δ ) ( 1 + ( tan 2 δ ) exp [ i ( 2 π Δ τ f + ψ ) ] ) ,

Metrics