Abstract

Digital holographic microscopy is used to numerically refocus a recorded hologram at an arbitrary axial distance. However, as a straightforward property of coherent light fields, image reconstruction on an arbitrary tilted plane could be directly obtained by a rotation in k-space. We demonstrate that this property allows the real-time microscopic inspection of particle distribution over three mutually orthogonal planes at the same time. As a straightforward application we use the proposed technique for real-time monitoring of fluid flow over the three cross sections of a microfluidic channel.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Hinsch, Meas. Sci. Technol. 13, R16 (2002).
    [CrossRef]
  2. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, Opt. Express 17, 13071 (2009).
    [CrossRef] [PubMed]
  3. M. J. Padgett, and R. Di Leonardo, Lab Chip 11, 1196 (2011).
    [CrossRef] [PubMed]
  4. J. Crocker and D. Grier, J. Colloid Interface Sci. 179, 298(1996).
    [CrossRef]
  5. S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
    [CrossRef]
  6. L. Ghislain and W. Webb, Opt. Lett. 18, 1678 (1993).
    [CrossRef] [PubMed]
  7. E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
    [CrossRef]
  8. R. Bowman, G. Gibson, and M. Padgett, Opt. Express 18, 11785 (2010).
    [CrossRef] [PubMed]
  9. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, Opt. Express 18, 13563 (2010).
    [CrossRef] [PubMed]
  10. G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express, accepted for publication.
  11. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, Opt. Express 16, 11776 (2008).
    [CrossRef] [PubMed]
  12. T. Tommasi and B. Bianco, Opt. Lett. 17, 556 (1992).
    [CrossRef] [PubMed]
  13. N. Akhter and K. S. Kim, Opt. Commun. 283, 5107 (2010).
    [CrossRef]

2011 (1)

M. J. Padgett, and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (1)

2008 (1)

2007 (1)

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

2002 (1)

K. D. Hinsch, Meas. Sci. Technol. 13, R16 (2002).
[CrossRef]

1996 (2)

J. Crocker and D. Grier, J. Colloid Interface Sci. 179, 298(1996).
[CrossRef]

E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
[CrossRef]

1993 (1)

1992 (1)

Akhter, N.

N. Akhter and K. S. Kim, Opt. Commun. 283, 5107 (2010).
[CrossRef]

Amato-Grill, J.

Bianchi, S.

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express, accepted for publication.

Bianco, B.

Bolognesi, G.

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express, accepted for publication.

Bowman, R.

Cheong, F. C.

Crocker, J.

J. Crocker and D. Grier, J. Colloid Interface Sci. 179, 298(1996).
[CrossRef]

Di Leonardo, R.

M. J. Padgett, and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef] [PubMed]

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express, accepted for publication.

Dixon, L.

Dreyfus, R.

Florin, E.

E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
[CrossRef]

Ghislain, L.

Gibson, G.

R. Bowman, G. Gibson, and M. Padgett, Opt. Express 18, 11785 (2010).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

Grier, D.

J. Crocker and D. Grier, J. Colloid Interface Sci. 179, 298(1996).
[CrossRef]

Grier, D. G.

Hinsch, K. D.

K. D. Hinsch, Meas. Sci. Technol. 13, R16 (2002).
[CrossRef]

Hörber, J.

E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
[CrossRef]

Ito, T.

Keen, S.

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

Kim, K. S.

N. Akhter and K. S. Kim, Opt. Commun. 283, 5107 (2010).
[CrossRef]

Krishnatreya, B. J.

Leach, J.

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

Miura, J.

Padgett, M.

R. Bowman, G. Gibson, and M. Padgett, Opt. Express 18, 11785 (2010).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

Padgett, M. J.

M. J. Padgett, and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef] [PubMed]

Sato, Y.

Shimobaba, T.

Stelzer, E.

E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
[CrossRef]

Sun, B.

Takenouchi, M.

Tommasi, T.

Webb, W.

Xiao, K.

Appl. Phys. Lett. (1)

E. Florin, J. Hörber, and E. Stelzer, Appl. Phys. Lett. 69, 446 (1996).
[CrossRef]

J. Colloid Interface Sci. (1)

J. Crocker and D. Grier, J. Colloid Interface Sci. 179, 298(1996).
[CrossRef]

Lab Chip (1)

M. J. Padgett, and R. Di Leonardo, Lab Chip 11, 1196 (2011).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

K. D. Hinsch, Meas. Sci. Technol. 13, R16 (2002).
[CrossRef]

Opt. Commun. (1)

N. Akhter and K. S. Kim, Opt. Commun. 283, 5107 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Pure Appl. Opt. (1)

S. Keen, J. Leach, G. Gibson, and M. Padgett, Pure Appl. Opt. 9, S264 (2007).
[CrossRef]

Other (1)

G. Bolognesi, S. Bianchi, and R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express, accepted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Simultaneous orthogonal views of tracers in a microchannel flow. (a) Raw hologram; (b),(c),(d)  reconstructed images over three orthogonal cross sections. For clarity reasons only, 115 μm × 115 μm cropped regions are shown. To enhance flow visualization, we have superimposed five frames with a time interval of 0.2 s . Panel (e) shows in black circles the average velocity profile extracted from y z reconstructions together with the theoretical parabolic behavior as a red line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = F ( ν x , ν y ) exp [ i 2 π ( ν x x + ν y y ) ] d ν x d ν y ,
g ( x , y ) = H d ( ν x , ν y ) F ( ν x , ν y ) × exp [ i 2 π ( ν x x + ν y y ) ] d ν x d ν y ,
H d ( ν x , ν y ) = exp [ i 2 π ( ( 1 / λ ) 2 ν x 2 ν y 2 ) 1 2 d ] ,
G ( ν x , ν y ) = e 0 * E s ( ν x , ν y ) H d ( ν x , ν y ) + e 0 E s * ( ν x , ν y ) H d ( ν x , ν y ) ,
f ( x , y ) = m , n F m , n exp [ i 2 π ( ν m x + ν n y ) ] ,
U ( R ) = m , n F m , n exp ( i K m , n · R ) ,
U ( R ) = m , n F m , n exp ( i K m , n · R ) ,
g ( ξ , η ) = m , n F m , n exp [ i 2 π ( ν n ξ + ν m η ) ] .
G p , q = m , n F m , n Θ ( 1 2 u | ν p ν m | ) Θ ( 1 2 u | ν q ν n | ) ,
g ( ξ , η ) = p , q G p , q exp [ i 2 π ( ν p ξ + ν q η ) ] .

Metrics