Abstract

We present joint investigations of relative intensity noise (RIN) and second-order coherence properties of amplified spontaneous emission (ASE) generated by a superluminescent diode. We introduce a generalized intensity noise description for ASE sources that contains the shot noise contribution but also accounts for first- and second-order coherence properties reflecting the process of light generation. We find excellent agreement between pump-current-dependent RIN values and this new description, with the perspective of particular interesting consequences for the realization of low-noise broadband emitters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, Arch. Sci. Phys. Nat. 37, 254 (1914).
  2. R. Glauber, Phys. Rev. Lett. 10, 84 (1963).
    [CrossRef]
  3. L. Mandel and E. Wolf, Selected Papers on Coherence and Fluctuations of Light (Dover, 1971).
  4. R. Loudon, The Quantum Theory of Light, 2nd ed. (Oxford University Press, 1983), Eq. (3.90).
  5. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
    [CrossRef]
  6. D. B. Scarl, Phys. Rev. 175, 1661 (1968).
    [CrossRef]
  7. K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
    [CrossRef]
  8. H. Hodara, Proc. IEEE 53, 696 (1965).
    [CrossRef]
  9. M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
    [CrossRef]
  10. S. M. Pietralunga, P. Martelli, and M. Martinelli, Opt. Lett. 28, 152 (2003).
    [CrossRef] [PubMed]
  11. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
    [CrossRef]

2010

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

2009

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

2007

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

2003

1988

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
[CrossRef]

1968

D. B. Scarl, Phys. Rev. 175, 1661 (1968).
[CrossRef]

1965

H. Hodara, Proc. IEEE 53, 696 (1965).
[CrossRef]

1963

R. Glauber, Phys. Rev. Lett. 10, 84 (1963).
[CrossRef]

1914

A. Einstein, Arch. Sci. Phys. Nat. 37, 254 (1914).

Blazek, M.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Boitier, F.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Breuer, S.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Calligaro, M.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Einstein, A.

A. Einstein, Arch. Sci. Phys. Nat. 37, 254 (1914).

Elsässer, W.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Fabre, C.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

Gensty, T.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Glauber, R.

R. Glauber, Phys. Rev. Lett. 10, 84 (1963).
[CrossRef]

Godard, A.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

Groom, K. M.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Hodara, H.

H. Hodara, Proc. IEEE 53, 696 (1965).
[CrossRef]

Hopkinson, M.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Krakowski, M.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 2nd ed. (Oxford University Press, 1983), Eq. (3.90).

Mandel, L.

L. Mandel and E. Wolf, Selected Papers on Coherence and Fluctuations of Light (Dover, 1971).

Martelli, P.

Martinelli, M.

Mogi, K.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
[CrossRef]

Naganuma, K.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
[CrossRef]

Pietralunga, S. M.

Resneau, P.

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Rosencher, E.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

Scarl, D. B.

D. B. Scarl, Phys. Rev. 175, 1661 (1968).
[CrossRef]

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Selected Papers on Coherence and Fluctuations of Light (Dover, 1971).

Yamada, H.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
[CrossRef]

Arch. Sci. Phys. Nat.

A. Einstein, Arch. Sci. Phys. Nat. 37, 254 (1914).

IEEE Photon. Technol. Lett.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, IEEE Photon. Technol. Lett. 22, 1057 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

K. Mogi, K. Naganuma, and H. Yamada, Jpn. J. Appl. Phys. 27, 2078 (1988).
[CrossRef]

Nat. Phys.

F. Boitier, A. Godard, E. Rosencher, and C. Fabre, Nat. Phys. 5, 267 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev.

D. B. Scarl, Phys. Rev. 175, 1661 (1968).
[CrossRef]

Phys. Rev. Lett.

R. Glauber, Phys. Rev. Lett. 10, 84 (1963).
[CrossRef]

Proc. IEEE

H. Hodara, Proc. IEEE 53, 696 (1965).
[CrossRef]

Proc. SPIE

M. Blazek, S. Breuer, T. Gensty, W. Elsässer, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, and M. Krakowski, Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Other

L. Mandel and E. Wolf, Selected Papers on Coherence and Fluctuations of Light (Dover, 1971).

R. Loudon, The Quantum Theory of Light, 2nd ed. (Oxford University Press, 1983), Eq. (3.90).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical linewidth Δ ν of SLD (left scale) and correlation time t 1 (right scale). (inset) Optical spectrum at 500 mA .

Fig. 2
Fig. 2

Second-order correlation function g ( 2 ) ( τ ) for various pump currents. (inset) Experimental setup with photon-shielded box, PSB; superluminescent diode, SLD; aspheric lenses, L; beam splitter, BS; mirrors, M; photomultiplier operating in TPA mode, TPA PMT.

Fig. 3
Fig. 3

Correlation time t 2 (left scale) and chaoticity coefficient β (right scale) for various pump currents.

Fig. 4
Fig. 4

Measured RIN of SLD (squares) for various pump currents together with the calculated RIN values RIN chaotic (triangles) and RIN general (circles). (inset) Direct detection setup with SLD; aspheric lens, L; photodiode, PD; low-noise amplifier, Amp; electrical spectrum analyzer, ESA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t 1 = | g ( 1 ) ( τ ) | 2 d τ .
β = ( g source ( 2 ) ( τ ) 1 ) d τ ( g chaotic ( 2 ) ( τ ) 1 ) d τ = ( g source ( 2 ) ( τ ) 1 ) d τ | g ( 1 ) ( τ ) | d τ = t 2 t 1 ,
t 2 = ( g ( 2 ) ( τ ) 1 ) d τ .
RIN chaotic = 1 i 2 [ 2 e i + i 2 Δ ν ] = 2 e i + 1 Δ ν ,
RIN general = 2 e i + i sp 2 i 2 · 1 Δ ν = 2 e i + β 2 Δ ν .

Metrics