Abstract

We show that whispering-gallery modes (WGMs) in optical microresonators can be excited and detected using a fused-tapered fiber tip (FTFT). The fabrication of FTFTs is simple and inexpensive; they are robust and allow the excitation and interrogation of the resonances with a single fiber. Excitation of high-Q WGMs in silica microcylinders and microspheres is demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  2. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  3. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, Opt. Lett. 34, 1318 (2009).
    [CrossRef] [PubMed]
  4. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, Opt. Lett. 25, 1430 (2000).
    [CrossRef]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  6. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Express 15, 12011 (2007).
    [CrossRef] [PubMed]
  7. M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
    [CrossRef]
  8. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]
  9. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, Opt. Lett. 20, 813 (1995).
    [CrossRef] [PubMed]
  10. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  11. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef] [PubMed]
  12. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 35, 571 (2010).
    [CrossRef] [PubMed]
  13. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, Opt. Lett. 34, 1039 (2009).
    [CrossRef] [PubMed]
  14. J. R. Wait, Radio Sci. 2, 1005 (1967).
  15. M. Sumetsky, Opt. Lett. 36, 145 (2011).
    [CrossRef] [PubMed]
  16. S. Fan, Appl. Phys. Lett. 80, 908 (2002).
    [CrossRef]

2011

2010

2009

2007

2005

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2002

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

2000

1999

1997

1996

1995

1994

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

1967

J. R. Wait, Radio Sci. 2, 1005 (1967).

Andrés, M. V.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Badenes, G.

Birks, T. A.

Cai, M.

Cheung, G.

Díez, A.

Domínguez-Juárez, J. L.

Dubreuil, N.

Fan, S.

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Finazzi, V.

Gimeno, B.

Gorodetsky, M. L.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hare, J.

Ilchenko, V. S.

Jacques, F.

Jha, R.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Lefèvre, V.

Leventhal, D. K.

Liang, W.

Lou, N.

Maleki, L.

Matsko, A. B.

Painter, O.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Pruneri, V.

Sandoghdar, V.

Savchenkov, A. A.

Seidel, D.

Sercel, P. C.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Sumetsky, M.

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, Opt. Lett. 25, 1430 (2000).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Villatoro, J.

Wait, J. R.

J. R. Wait, Radio Sci. 2, 1005 (1967).

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Yao, X. S.

Zamora, V.

Appl. Phys. Lett.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Commun.

M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun. 113, 133 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Radio Sci.

J. R. Wait, Radio Sci. 2, 1005 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

FTFT profile. Inset: photograph of a FTFT.

Fig. 2
Fig. 2

Experimental setup. C, optical circulator; PC, polarization controller; TLS, tunable laser; MR, microresonator. The photograph shows a top view of the FTFT when it is used to excite the WGM resonances of a microcylinder.

Fig. 3
Fig. 3

Spectra of the reflected light when the FTFT is used for the excitation of resonances in a 125 μm diam eter silica cylinder. (a) Wide spectra showing several TE z - and TM z -polarized resonances. (b) and (c) show in detail the notches corresponding to the excitation of the TM z 1 , 361 and TE z 1 , 361 WGMs. Nomenclature: the first subindex is the radial order and the second subindex is the angular order.

Fig. 4
Fig. 4

Spectra around a resonance as the FTFT approaches a 118 μm diameter microsphere. The curve with the deepest peak corresponds to the case when the FTFT touches the microsphere, and the upper curve to when the FTFT and the microsphere are 2.5 μm apart. Inset: photograph of the FTFT and the microsphere when they are in contact.

Metrics