Abstract

In this Letter, a new method for avalanche photodiode characterization, based on the spectral analysis of the photocurrent produced during an avalanche, is proposed. The theory is developed, and an experimental characterization of an avalanche photodiode working in the Geiger mode with CW laser is performed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.
  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
    [CrossRef] [PubMed]
  3. J. Oh, C. Antonelli, M. Tur, and M. Brodsky, Opt. Express 18, 5906 (2010).
    [CrossRef] [PubMed]
  4. A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
    [CrossRef]
  5. G. Ribordy, J. D. Gautier, H. Zbinden, and N. Gisin, Appl. Opt. 37, 2272 (1998).
    [CrossRef]
  6. M. D. S. Cavalcanti, F. A. Mendonça, and R. V. Ramos, in SBMO/IEEE Proceedings of International Microwave and Optoelectronics Conference (2009), p. 705.
  7. N. Namekata, S. Sasamori, and S. Inoue, Opt. Express 14, 10043 (2006).
    [CrossRef] [PubMed]
  8. N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
    [CrossRef]
  9. F. A. Mendonça, D. B. de Brito, and R. V. Ramos, “An optical scheme for quantum multi-service network” (2011), http://arxiv.org/abs/1105.2289.

2010 (1)

2007 (1)

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

2006 (1)

2002 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
[CrossRef]

1998 (1)

1991 (1)

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Antonelli, C.

Bennett, C. H.

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Brassard, G.

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Brodsky, M.

Cavalcanti, M. D. S.

M. D. S. Cavalcanti, F. A. Mendonça, and R. V. Ramos, in SBMO/IEEE Proceedings of International Microwave and Optoelectronics Conference (2009), p. 705.

de Brito, D. B.

F. A. Mendonça, D. B. de Brito, and R. V. Ramos, “An optical scheme for quantum multi-service network” (2011), http://arxiv.org/abs/1105.2289.

Ekert, A. K.

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Fujii, G.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

Gautier, J. D.

Gisin, N.

Honjo, T.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

Inoue, S.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

N. Namekata, S. Sasamori, and S. Inoue, Opt. Express 14, 10043 (2006).
[CrossRef] [PubMed]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
[CrossRef]

Mendonça, F. A.

M. D. S. Cavalcanti, F. A. Mendonça, and R. V. Ramos, in SBMO/IEEE Proceedings of International Microwave and Optoelectronics Conference (2009), p. 705.

F. A. Mendonça, D. B. de Brito, and R. V. Ramos, “An optical scheme for quantum multi-service network” (2011), http://arxiv.org/abs/1105.2289.

Namekata, N.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

N. Namekata, S. Sasamori, and S. Inoue, Opt. Express 14, 10043 (2006).
[CrossRef] [PubMed]

Oh, J.

Ramos, R. V.

M. D. S. Cavalcanti, F. A. Mendonça, and R. V. Ramos, in SBMO/IEEE Proceedings of International Microwave and Optoelectronics Conference (2009), p. 705.

F. A. Mendonça, D. B. de Brito, and R. V. Ramos, “An optical scheme for quantum multi-service network” (2011), http://arxiv.org/abs/1105.2289.

Ribordy, G.

Sasamori, S.

Takesue, H.

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
[CrossRef]

Tur, M.

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
[CrossRef]

Zbinden, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Namekata, G. Fujii, S. Inoue, T. Honjo, and H. Takesue, Appl. Phys. Lett. 91, 011112 (2007).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 38, 1468 (2002).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Other (3)

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

F. A. Mendonça, D. B. de Brito, and R. V. Ramos, “An optical scheme for quantum multi-service network” (2011), http://arxiv.org/abs/1105.2289.

M. D. S. Cavalcanti, F. A. Mendonça, and R. V. Ramos, in SBMO/IEEE Proceedings of International Microwave and Optoelectronics Conference (2009), p. 705.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental scheme implemented. VOA, variable optical attenuator.

Fig. 2
Fig. 2

Spectral power in the bands B 1 = [ 7.5 MHz 77.5 MHz ] and B 2 = [ 7.5 MHz 132.5 MHz ] versus mean photon number: experimental data and theoretical model.

Fig. 3
Fig. 3

Spectral power in the bands B 3 = [ 45 MHz 95 MHz ] and B 4 = [ 20 MHz 120 MHz ] versus mean photon number: experimental data and theoretical model.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p n = p D + ( 1 p D ) p a [ k = 1 n 1 p k e ( n 1 k ) τ j = k + 1 n 1 ( 1 p j ) ] ,
p D = 1 e η μ ( 1 p d ) ,
P 2 [ p a ( 1 p D ) e τ + p D + ( 1 e τ ) ] P + p D ( 1 e τ ) = 0 .
s ( t ) = k = s k f ( t k T 0 ) ,
R s ( τ ) = ( 1 / T 0 ) 0 T 0 E { k = i = s k f ( t k T 0 ) s i f ( t + τ i T 0 ) } d t = ( 1 / T 0 ) k = i = E { s k s i } 0 T 0 f ( t k T 0 ) f ( t + τ i T 0 ) d t ,
S ( ω ) = R s ( τ ) e j ω τ d τ = | F ( ω ) | 2 T 0 k = i = R ( i k ) e j ω ( i k ) T 0 = ( | F ( ω ) | 2 / T 0 ) l = R ( l ) e j ω l T 0 .
l = exp ( j ω l T 0 ) = ( 2 π / T 0 ) l = δ ( ω 2 π l / T 0 ) .
S ( ω ) = ( P P 2 ) ( | F ( ω ) | 2 / T 0 ) + P 2 ( 2 π / T 0 2 ) | F ( ω ) | 2 l = δ ( ω 2 π l / T 0 ) .
W = [ ( P P 2 ) / T 0 ] ω 1 ω 2 | F ( ω ) | 2 d ω = K ( ω 1 , ω 2 ) ( P P 2 ) .
μ = P Laser ( λ τ g / h c ) 10 α [ dB ] / 10 ,
C = i | W m ( μ i ) W c ( μ i ) | .

Metrics