Abstract

A theoretical model, novel to our knowledge, to investigate the near-field optical diffraction from a subwavelength aperture in a thin conducting film is presented. A governing equation for the magnetic field distribution in an optical thin film based on the power flow theorem is derived for the first time. Thus all of the components of the electric and magnetic fields inside or outside the thin film with a subwavelength aperture embedded can be obtained by applying the Hankel transform accurately. Numerical computations are performed to illustrate the edge effect by an enhancement factor of 2.2 and the depolarization phenomenon of the transmission in terms of the distance from the film surface.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel optical super-resolution pattern with upright edges diffracted by a tiny thin aperture

Jiu Hui Wu and Kejiang Zhou
Opt. Express 23(17) 22214-22223 (2015)

Diffraction from a small square aperture:approximate aperture fields

R. Edward English and Nicholas George
J. Opt. Soc. Am. A 5(2) 192-199 (1988)

Near-field diffraction by a slit: implications for superresolution microscopy

Eric Betzig, A. Harootunian, A. Lewis, and M. Isaacson
Appl. Opt. 25(12) 1890-1900 (1986)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription