Abstract

A theoretical model, novel to our knowledge, to investigate the near-field optical diffraction from a subwavelength aperture in a thin conducting film is presented. A governing equation for the magnetic field distribution in an optical thin film based on the power flow theorem is derived for the first time. Thus all of the components of the electric and magnetic fields inside or outside the thin film with a subwavelength aperture embedded can be obtained by applying the Hankel transform accurately. Numerical computations are performed to illustrate the edge effect by an enhancement factor of 2.2 and the depolarization phenomenon of the transmission in terms of the distance from the film surface.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Hsu, Opt. Lett. 29, 2157 (2004).
    [CrossRef] [PubMed]
  2. D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000).
    [CrossRef]
  3. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, Opt. Lett. 29, 174 (2004).
    [CrossRef] [PubMed]
  4. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard, and F. de Fornel, Opt. Lett. 31, 2160 (2006).
    [CrossRef] [PubMed]
  5. H. A. Bethe, Phys. Rev. 66, 163 (1944).
    [CrossRef]
  6. C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954).
    [CrossRef]
  7. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
    [CrossRef] [PubMed]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
    [CrossRef] [PubMed]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  10. H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004).
    [CrossRef] [PubMed]
  11. J. H. Wu, A. Q. Liu, and H. H. Li, Opt. Lett. 31, 2438 (2006).
    [CrossRef] [PubMed]
  12. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  13. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
    [CrossRef]
  14. G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
    [CrossRef]

2007 (1)

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

2006 (3)

2004 (4)

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

2000 (1)

D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1954 (1)

C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

1944 (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Bethe, H. A.

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Birner, A.

Bouwkamp, C. J.

C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

Callard, S.

Ctistis, G.

G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
[CrossRef]

de Fornel, F.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Fumagalli, P.

G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

Gérard, D.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Gösele, U.

Hsu, J. Y.

Huant, S.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Kafesaki, M.

Kramper, P.

Lezec, H. J.

H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, H. H.

Lin, W. C.

D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Liu, A. Q.

Louvion, N.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Mlynek, J.

Müller, F.

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
[CrossRef]

Paggel, J. J.

G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
[CrossRef]

Rahmani, A.

Sandoghdar, V.

Schimek, O.

G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
[CrossRef]

Seassal, C.

Soukoulis, C. M.

Thio, T.

H. J. Lezec and T. Thio, Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Tsai, D. P.

D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000).
[CrossRef]

Wehrspohn, R. B.

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wu, J. H.

Appl. Phys. Lett. (1)

D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413(2000).
[CrossRef]

Europhys. Lett. (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, Europhys. Lett. 66, 41 (2004).
[CrossRef]

J. Appl. Phys. (1)

G. Ctistis, O. Schimek, P. Fumagalli, and J. J. Paggel, J. Appl. Phys. 99, 014505 (2006).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. (1)

H. A. Bethe, Phys. Rev. 66, 163 (1944).
[CrossRef]

Rep. Prog. Phys. (1)

C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[CrossRef] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of a thin film with a subwavelength size aperture.

Fig. 2
Fig. 2

Total electric field magnitude at the different observation points in the longitudinal section y = 0 .

Fig. 3
Fig. 3

Intensity maps for the electric field ( | E | and the components | E 1 | , | E 2 | , and | E 3 | ) created by the model presented at different cross sections; (a)  z 0 = 14 nm , (b)  z 0 = 18 nm . All images in each row share the same color bar.

Fig. 4
Fig. 4

Transmitted distance-dependent electric field magnitude along the axis of symmetry.

Fig. 5
Fig. 5

Total electric field magnitude contour from the circular aperture at the longitudinal section y = 0 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

4 H 3 k 4 H 3 = 3 i ω ε h 2 [ E 3 U z | z = h / 2 E 3 D z | z = h / 2 ] ,
Φ r ( r , θ , z ) = n = 0 Φ ˜ r ( ρ ) J n ( ρ r ) e i k 0 2 ρ 2 ( z h / 2 ) ρ d ρ e i n θ ,
Φ t ( r , θ , z ) = n = 0 Φ ˜ t ( ρ ) J n ( ρ r ) e i k 0 2 ρ 2 ( z + h / 2 ) ρ d ρ e i n θ ,
H 3 ( r , θ ) = n = 0 [ A n J n ( k r ) + C n I n ( k r ) + F n · r n ] exp ( i n θ ) ,
F n = 3 k 0 2 exp ( i k 0 h / 2 ) π h 2 ( i ω μ ) k 4 ( 1 ) n + 1 1 ( n + 1 ) 2 n + 1 n ! ,

Metrics