Abstract

In two-dimensional optical chip applications, the optical wave is classified to two modes according to its polarization: TE and TM. It is desirable to integrate multiple optical wave control devices for different polarizations onto the same plane at the scale of the wavelength. Here we demonstrate a periodic two-pattern photonic crystal with a large, complete photonic bandgap (PBG). It comes from the superposition of two substructures: one contributes the TM PBG and the other contributes the TE PBG. By purposely introducing defects into the substructures, photonic devices for different polarizations can be integrated to bend, split, and resonate TM/TE waves simultaneously on the same plane.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
    [CrossRef]
  3. S.-C. Cheng, X. Zhu, and S. Yang, Opt. Express 17, 16710(2009).
    [CrossRef] [PubMed]
  4. X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
    [CrossRef]
  5. M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).
  6. L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114(2006).
    [CrossRef]
  7. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).
    [CrossRef]
  8. L. Jia, I. Bita, and E. L. Thomas, “Photonic density of states of two-dimensional quasicrystalline photonic structures,” Phys. Rev. A (to be published).
    [PubMed]
  9. L. Jia and E. L. Thomas, “2-pattern photonic crystals with large complete photonic band gap,” Phys. Rev. A (to be published).
    [PubMed]
  10. M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
    [CrossRef] [PubMed]
  11. M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
    [CrossRef]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).
  13. W. S. Kim, L. Jia, and E. L. Thomas, Adv. Mater. 21, 1921(2009).
    [CrossRef]
  14. L. Jia and E. L. Thomas, J. Opt. Soc. Am. B 26, 1882 (2009).
    [CrossRef]
  15. Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
    [CrossRef]

2010

M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
[CrossRef]

2009

2008

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

2006

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114(2006).
[CrossRef]

Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
[CrossRef]

1998

K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).
[CrossRef]

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
[CrossRef]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Andreani, L. C.

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114(2006).
[CrossRef]

Bita, I.

L. Jia, I. Bita, and E. L. Thomas, “Photonic density of states of two-dimensional quasicrystalline photonic structures,” Phys. Rev. A (to be published).
[PubMed]

Busch, K.

K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Chaikin, P. M.

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

Chandra, D.

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Cheng, S.-C.

S.-C. Cheng, X. Zhu, and S. Yang, Opt. Express 17, 16710(2009).
[CrossRef] [PubMed]

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
[CrossRef]

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).

Florescu, M.

M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114(2006).
[CrossRef]

Hirayama, K.

Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
[CrossRef]

Jeong, H. C.

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

Jia, L.

W. S. Kim, L. Jia, and E. L. Thomas, Adv. Mater. 21, 1921(2009).
[CrossRef]

L. Jia and E. L. Thomas, J. Opt. Soc. Am. B 26, 1882 (2009).
[CrossRef]

L. Jia, I. Bita, and E. L. Thomas, “Photonic density of states of two-dimensional quasicrystalline photonic structures,” Phys. Rev. A (to be published).
[PubMed]

L. Jia and E. L. Thomas, “2-pattern photonic crystals with large complete photonic band gap,” Phys. Rev. A (to be published).
[PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).

John, S.

K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).

Kikkawa, J. M.

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Kim, W. S.

W. S. Kim, L. Jia, and E. L. Thomas, Adv. Mater. 21, 1921(2009).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).

Morita, Y.

Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).

Rechtsman, M. C.

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

Steinhardt, P. J.

M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
[CrossRef]

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

Thomas, E. L.

W. S. Kim, L. Jia, and E. L. Thomas, Adv. Mater. 21, 1921(2009).
[CrossRef]

L. Jia and E. L. Thomas, J. Opt. Soc. Am. B 26, 1882 (2009).
[CrossRef]

L. Jia, I. Bita, and E. L. Thomas, “Photonic density of states of two-dimensional quasicrystalline photonic structures,” Phys. Rev. A (to be published).
[PubMed]

L. Jia and E. L. Thomas, “2-pattern photonic crystals with large complete photonic band gap,” Phys. Rev. A (to be published).
[PubMed]

Torquato, S.

M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
[CrossRef]

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

Tsuji, Y.

Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yang, S.

S.-C. Cheng, X. Zhu, and S. Yang, Opt. Express 17, 16710(2009).
[CrossRef] [PubMed]

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Zhang, Y.

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Zhu, X.

S.-C. Cheng, X. Zhu, and S. Yang, Opt. Express 17, 16710(2009).
[CrossRef] [PubMed]

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

Adv. Mater.

W. S. Kim, L. Jia, and E. L. Thomas, Adv. Mater. 21, 1921(2009).
[CrossRef]

Appl. Phys. Lett.

X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, Appl. Phys. Lett. 93, 161911 (2008).
[CrossRef]

M. Florescu, S. Torquato, and P. J. Steinhardt, Appl. Phys. Lett. 97, 201103 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Tsuji, Y. Morita, and K. Hirayama, IEEE Photon. Technol. Lett. 18, 2410 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Nature

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, Nature 386, 143 (1997).
[CrossRef]

Opt. Express

Phys. Rev. A

L. Jia, I. Bita, and E. L. Thomas, “Photonic density of states of two-dimensional quasicrystalline photonic structures,” Phys. Rev. A (to be published).
[PubMed]

L. Jia and E. L. Thomas, “2-pattern photonic crystals with large complete photonic band gap,” Phys. Rev. A (to be published).
[PubMed]

Phys. Rev. B

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114(2006).
[CrossRef]

Phys. Rev. E

K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).
[CrossRef]

Phys. Rev. Lett.

M. C. Rechtsman, H. C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, Phys. Rev. Lett. 101, 073902 (2008).
[CrossRef] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton Univ. Press, 2008).

M. L. Povinelli, S. G. Johnson, S. H. Fan, and J. D. Joannopoulos, Phys. Rev. B 64, 075313 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Periodic two-pattern photonic crystal consisting of honeycomb (TE substructure, which contributes TE PBG) and rods of a triangular lattice (TM substructure, which contributes TM PBG). The unit cell is shown in the parallelogram. (b) LDOS calculation of the structure. (c) PBG properties of the two- pattern structure as we tune the TM substructure filling ratio while keeping the TE substructure filling ratio 0.088. (d) PBG properties of the two-pattern structure as we tune the TE substructure filling ratio while keeping the TM substructure filling ratio 0.089.

Fig. 2
Fig. 2

(a) TE waveguide. (b) TM waveguide. (c) Optical wave transmission spectra for the TE wave inside the TE waveguide. (d) Optical wave transmission spectra for the TM wave inside the TM waveguide. (e) TE wave is sent from left into the TE waveguide. It propagates inside the TE waveguide while the TM wave of the same frequency is blocked. (f) TE wave is sent from left into the TM waveguide. It is forbidden to propagate. (g) TM wave is forbidden to propagate inside TE waveguide. (h) TM wave propagates inside the TM waveguide while the TE wave of the same frequency is blocked.

Fig. 3
Fig. 3

(a) Crossed waveguide. The transverse channel allows the propagation of TM waves and the vertical channel allows the propagation of TE waves. A TE wave is sent into the crossed waveguide through branch 1 and a TM wave of the same frequency is sent into the crossed waveguide through branch 2. (b) TE wave light intensity distribution. (c) TM wave light intensity distribution.

Fig. 4
Fig. 4

(a) Wavelength-scale T-shaped polarizer. Both the TM and the TE waves are introduced into region 3 and are separated into regions 2 and 1. (b) TE wave light intensity distribution. (c) TM wave light intensity distribution.

Fig. 5
Fig. 5

(a) Resonator for both TM and TE waves. (b) Energy dissipation plot for the two resonance peaks. The upper lines are for TM waves and the lower lines are for TE waves.

Tables (1)

Tables Icon

Table 1 PBG Properties of the Optimized Two-Pattern Photonic Crystal and the Associated Substructures a

Metrics