Abstract

A classical realization of the Jaynes–Cummings (JC) model, describing the interaction of a two-level atom with a quantized cavity mode, is proposed based on light transport in engineered waveguide superlattices. The optical setting enables us to visualize in Fock space dynamical regimes not yet accessible in quantum systems, providing new physical insights into the deep strong coupling regime of the JC model. In particular, bouncing of photon number wave packets in Hilbert space and revivals of populations are explained as generalized Bloch oscillations in an inhomogeneous tight-binding lattice.

© 2011 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription