Abstract

The use of ultrashort (femtosecond duration) light pulses for line-of-sight free-space optical (FSO) communication through fog is receiving increasing attention. Assuming that the transmitter power is low enough to preclude nonlinear interactions, and that scattering-induced multipath spread is less than the reciprocal of the scattering-induced Doppler spread, it is shown that the average transmitter-to-receiver fractional energy transfer of an ultrafast FSO system cannot exceed that of a quasimonochromatic (nanosecond pulse duration) system operating at the optimum wavelength within the ultrafast system’s spectrum. Thus, an ultrashort-pulse system is not a solution for high-data-rate FSO communication through fog, because, at best, it will reproduce on average the energy-transfer performance of a wavelength-optimized quasimonochromatic system.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004).
    [CrossRef]
  2. J. H. Shapiro, in Laser Beam Propagation in the Atmosphere, J.W.Strohbehn, ed. (Springer-Verlag, 1978), pp. 171–222.
  3. R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970).
    [CrossRef]
  4. G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, and R. A. Krautwald, Appl. Opt. 18, 429 (1979).
    [CrossRef] [PubMed]
  5. E. A. Bucher, Appl. Opt. 12, 2391 (1973).
    [CrossRef] [PubMed]
  6. W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).
  7. E. A. Bucher and R. M. Lerner, Appl. Opt. 12, 2401 (1973).
    [CrossRef] [PubMed]
  8. S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
    [CrossRef]
  9. Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
    [CrossRef]
  10. U. Parali and D. R. Alexander, Opt. Express 18, 15155(2010).
    [CrossRef] [PubMed]
  11. D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
    [CrossRef]
  12. P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
    [CrossRef]
  13. R. S. Kennedy, Fading Dispersive Communication Channels (Wiley-Interscience, 1969).

2010

2007

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

2005

S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
[CrossRef]

2004

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004).
[CrossRef]

1982

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

1979

1973

1970

R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970).
[CrossRef]

Alexander, D. R.

U. Parali and D. R. Alexander, Opt. Express 18, 15155(2010).
[CrossRef] [PubMed]

D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
[CrossRef]

Arnon, S.

D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004).
[CrossRef]

Bucher, E. A.

Cabaniss, J.

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

Chaffee, T.

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

Corrigan, P.

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

Dice, G. D.

S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
[CrossRef]

Doerr, D.

D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
[CrossRef]

Elezabbi, A. Y.

S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
[CrossRef]

Geller, M.

Gouesbet, G.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Gréhan, G.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Han, Y. P.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Holland, A. E.

R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970).
[CrossRef]

Jaeger, W. P.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

Kedar, D.

D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004).
[CrossRef]

Kennedy, R. S.

R. S. Kennedy, Fading Dispersive Communication Channels (Wiley-Interscience, 1969).

Krautwald, R. A.

Lerner, R. M.

E. A. Bucher and R. M. Lerner, Appl. Opt. 12, 2401 (1973).
[CrossRef] [PubMed]

R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970).
[CrossRef]

Li, J.

D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
[CrossRef]

Martini, R.

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

Méès, L.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Mooradian, G. C.

Mujumdar, S.

S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
[CrossRef]

Nakai, J.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

Nguyen, T. T.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

Parali, U.

Ren, K. F.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Ross, W. S.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

Shapiro, J. H.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

J. H. Shapiro, in Laser Beam Propagation in the Atmosphere, J.W.Strohbehn, ed. (Springer-Verlag, 1978), pp. 171–222.

Stephens, D. H.

Stotts, L. B.

Wu, Z. S.

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Zhang, H.

D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
[CrossRef]

Appl. Opt.

IEEE Commun. Mag.

D. Kedar and S. Arnon, IEEE Commun. Mag. 42 (5), S2 (2004).
[CrossRef]

Opt. Commun.

S. Mujumdar, G. D. Dice, and A. Y. Elezabbi, Opt. Commun. 247, 19 (2005).
[CrossRef]

Y. P. Han, L. Méès, K. F. Ren, G. Gréhan, Z. S. Wu, and G. Gouesbet, Opt. Commun. 231, 71 (2004).
[CrossRef]

Opt. Eng.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, and J. H. Shapiro, Opt. Eng. 21, 775 (1982).

Opt. Express

Proc. IEEE

R. M. Lerner and A. E. Holland, Proc. IEEE 58, 1547 (1970).
[CrossRef]

Proc. SPIE

P. Corrigan, R. Martini, J. Cabaniss, and T. Chaffee, Proc. SPIE 6457, 64570X (2007).
[CrossRef]

Other

R. S. Kennedy, Fading Dispersive Communication Channels (Wiley-Interscience, 1969).

D. R. Alexander, D. Doerr, J. Li, and H. Zhang, in Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS’04, Vol.  6 (IEEE, 2004), pp. 3880–3883.
[CrossRef]

J. H. Shapiro, in Laser Beam Propagation in the Atmosphere, J.W.Strohbehn, ed. (Springer-Verlag, 1978), pp. 171–222.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Propagation geometry for line-of-sight FSO communication through fog.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E OUT ( ρ , t ) = A 0 d ρ 0 d τ g ( ρ , ρ , t , τ ) E IN ( ρ , t τ ) ,
E OUT ( ρ , t ) = 0 d τ p ( ρ , t , τ ) E 0 s ( t τ ) ,
p ( ρ , t , τ ) A 0 d ρ g ( ρ , ρ , t , τ ) .
E OUT ( ρ , t ) = 0 d τ p 0 ( ρ , τ ) E 0 s ( t τ ) ,
H IN = c ϵ 0 2 E 0 E 0 d t | s ( t ) | 2 = c ϵ 0 2 E 0 E 0 d ω 2 π | S ( ω ) | 2 ,
E OUT ( k , ω ) A f d ρ d t E OUT ( ρ , t ) e i k T · ρ + i ω t ,
E OUT ( k , ω ) k z | k | E OUT ( k , ω ) ,
= P 0 ( k , ω ) E 0 S ( ω ) ,
P 0 ( k , ω ) = k z | k | P 0 ( k , ω )
= k z | k | A f d ρ 0 d τ p 0 ( ρ , τ ) e i k T · ρ + i ω τ .
H OUT = c ϵ 0 2 d k T ( 2 π ) 2 d ω 2 π E OUT ( k , ω ) E OUT ( k , ω )
= c ϵ 0 2 d k T ( 2 π ) 2 d ω 2 π E 0 P 0 ( k , ω ) P 0 ( k , ω ) × E 0 | S ( ω ) | 2
= c ϵ 0 2 d ω 2 π K ( ω ) | S ( ω ) | 2 ,
K ( ω ) d k T ( 2 π ) 2 E 0 P 0 ( k , ω ) P 0 ( k , ω ) E 0 0 ,

Metrics