Abstract

Microparticles can be trapped and propelled by the evanescent field of optical waveguides. As the evanescent field only stretches 100200nm from the surface of the waveguide, only the lower caps of the microparticles interact directly with the field. This is taken advantage of by trapping hollow glass spheres on waveguides in the same way as solid glass spheres. For the chosen waveguide, numerical simulations show that hollow microspheres with a shell thickness above 60nm can be stably trapped, while spheres with thinner shells are repelled. The average refractive index of the sphere–field intersection volume is used to explain the result in a qualitative way.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
    [CrossRef]
  2. K. T. Gahagan and G. A. Swartzlander, J. Opt. Soc. Am. B 15, 524 (1998).
    [CrossRef]
  3. K. T. Gahagan and G. A. Swartzlander, Jr., J. Opt. Soc. Am. B 16, 533 (1999).
    [CrossRef]
  4. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
    [CrossRef]
  5. B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
    [CrossRef]
  6. K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
    [CrossRef]
  7. S. Kawata and T. Tani, Opt. Lett. 21, 1768 (1996).
    [CrossRef] [PubMed]
  8. S. Gaugiran, S. Gétin, G. Colas, A. Fuchs, F. Chatelain, J. Dérouard, and J. M. Fedeli, Opt. Express 13, 6956 (2005).
    [CrossRef] [PubMed]
  9. B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
    [CrossRef]
  10. B. P. S. Ahluwalia, P. McCourt, Thomas Huser, and O. G. Hellesø, Opt. Express 18, 21053 (2010).
    [CrossRef] [PubMed]
  11. H. Y. Jaising and O. G. Hellesø, Opt. Commun. 246, 373 (2005).
    [CrossRef]
  12. J. Ng and C. T. Chan, Appl. Phys. Lett. 92, 251109 (2008).
    [CrossRef]
  13. P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
    [CrossRef]
  14. G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
    [CrossRef]

2011

P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
[CrossRef]

G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
[CrossRef]

2010

2009

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

2008

J. Ng and C. T. Chan, Appl. Phys. Lett. 92, 251109 (2008).
[CrossRef]

2006

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

2005

2002

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

1999

1998

1996

1992

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

1974

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
[CrossRef]

Ahluwalia, B. P. S.

B. P. S. Ahluwalia, P. McCourt, Thomas Huser, and O. G. Hellesø, Opt. Express 18, 21053 (2010).
[CrossRef] [PubMed]

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Ahluwalia, B. S.

P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
[CrossRef]

Artusio-Glimpse, A. B.

G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
[CrossRef]

Chan, C. T.

J. Ng and C. T. Chan, Appl. Phys. Lett. 92, 251109 (2008).
[CrossRef]

Chatelain, F.

Chávez-Cerda, S.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Cheong, W. C.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Colas, G.

Dérouard, J.

Dholakia, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
[CrossRef]

Fedeli, J. M.

Fuchs, A.

Gahagan, K. T.

Garcés-Chávez, V.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Gaugiran, S.

Gétin, S.

Helleso, O. G.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

Hellesø, O. G.

P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
[CrossRef]

B. P. S. Ahluwalia, P. McCourt, Thomas Huser, and O. G. Hellesø, Opt. Express 18, 21053 (2010).
[CrossRef] [PubMed]

H. Y. Jaising and O. G. Hellesø, Opt. Commun. 246, 373 (2005).
[CrossRef]

Huser, Thomas

Jaising, H. Y.

H. Y. Jaising and O. G. Hellesø, Opt. Commun. 246, 373 (2005).
[CrossRef]

Kawata, S.

Kitamura, N.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Koshioka, M.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Løvhaugen, P.

P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
[CrossRef]

Masuhara, H.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

McCourt, P.

Misawa, H.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Ng, J.

J. Ng and C. T. Chan, Appl. Phys. Lett. 92, 251109 (2008).
[CrossRef]

Perney, N. M. B.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

Peterson, T. J.

G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
[CrossRef]

Raisanen, A. D.

G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
[CrossRef]

Sasaki, K.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

Sessions, N. P.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

Sibbett, W.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Subramanian, A. Z.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

Swartzlander, G. A.

Tani, T.

Tao, S. H.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Volke-Sepulveda, K.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Wang, H.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Wilkinson, J. S.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

Yuan, X.-C.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Zhang, L. S.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

Appl. Phys. Lett.

K. Sasaki, H. Misawa, M. Koshioka, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 60, 807 (1992).
[CrossRef]

A. Ashkin and J. M. Dziedzic, Appl. Phys. Lett. 24, 586 (1974).
[CrossRef]

J. Ng and C. T. Chan, Appl. Phys. Lett. 92, 251109 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

B. P. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, IEEE Photon. Technol. Lett. 21, 1408 (2009).
[CrossRef]

J. Appl. Phys.

B. P. S. Ahluwalia, X.-C. Yuan, S. H. Tao, W. C. Cheong, L. S. Zhang, and H. Wang, J. Appl. Phys. 99, 113104 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photon.

G. A. Swartzlander, Jr., T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photon. 5, 48 (2011).
[CrossRef]

Opt. Commun.

H. Y. Jaising and O. G. Hellesø, Opt. Commun. 246, 373 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, Phys. Rev. A 66, 063402 (2002).
[CrossRef]

Proc. SPIE

P. Løvhaugen, B. S. Ahluwalia, and O. G. Hellesø, Proc. SPIE 7950, 79500P (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Waveguide trapping of a hollow sphere together with the simulated optical field.

Fig. 2
Fig. 2

Gradient ( F x ) and propagation ( F z ) optical forces on a hollow sphere of 1.5 μm radius for different shell thicknesses (t). The power guided in the waveguide is kept constant at 1 W .

Fig. 3
Fig. 3

Optical trapping regimes of hollow spheres as a function of radius (r) and shell thickness (t).

Fig. 4
Fig. 4

Refractive index and specific density of a batch of hollow spheres used in the experiment.

Fig. 5
Fig. 5

Optical propulsion of hollow and solid spheres of different diameters on a waveguide of width = 3 μm and for an input power = 1500 mW .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n hollow = n glass V sphere V air V sphere + n air V air V sphere .
V cap = π h 2 ( 3 r h ) 3 .
n cap = n glass V cap V cap:air V cap + n air V cap:air V cap ,
V cap:air = π ( h t ) 2 ( 3 ( r t ) ( h t ) ) 3 .

Metrics