Abstract

The performance of partially coherent free-space optical links is investigated in the moderate to strong fluctuation regime of non-Kolmogorov turbulence. The expressions for large- and small-scale log-irradiance flux variance are obtained in non-Kolmogorov turbulence. By employing the gamma–gamma distribution of irradiance fluctuations, the effects of spatial coherence of the source, index of non-Kolmogorov spectrum, and size of the receiver on channel capacity for horizontal links are discussed. Results show that channel capacity presents fluctuating behaviors with the variation of alpha for longer links and increases for alpha values higher than 11/3.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wu, H. Guo, S. Yu, and B. Luo, Opt. Lett. 35, 715 (2010).
    [CrossRef] [PubMed]
  2. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
    [CrossRef]
  3. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, J. Lightwave Technol. 27, 974(2009).
    [CrossRef]
  4. A. Belmonte and J. M. Kahn, Opt. Express 17, 2763 (2009).
    [CrossRef] [PubMed]
  5. O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
    [CrossRef]
  6. T. J. Schulz, Opt. Lett. 30, 1093 (2005).
    [CrossRef] [PubMed]
  7. C. Chen, H. Yang, X. Feng, and H. Wang, Opt. Lett. 34, 419 (2009).
    [CrossRef] [PubMed]
  8. D. K. Borah and D. G. Voelz, Opt. Express 18, 20746 (2010).
    [CrossRef] [PubMed]
  9. P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
    [CrossRef]
  10. L. Tan, W. Du, J. Ma, S. Yu, and Q. Han, Opt. Express 18, 451 (2010).
    [CrossRef] [PubMed]
  11. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
    [CrossRef]
  12. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
    [CrossRef]
  13. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
    [CrossRef]
  14. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
    [CrossRef]
  15. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, 2000).

2011 (1)

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

2010 (3)

2009 (4)

2008 (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

2007 (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

2005 (1)

2004 (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[CrossRef]

Andrews, L. C.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Belmonte, A.

Borah, D. K.

Chen, C.

Deng, P.

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

Du, W.

Fafalios, M. E.

Feng, X.

Ferrero, V.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, 2000).

Guo, H.

Han, Q.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Kahn, J. M.

Karagianni, E. A.

Korotkova, O.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[CrossRef]

Luo, B.

Luo, H.

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

Ma, J.

Nistazakis, H. E.

Phillips, R. L.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, 2000).

Schulz, T. J.

Tan, L.

Tombras, G. S.

Toselli, I.

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

Tsigopoulos, A. D.

Voelz, D. G.

Wang, H.

Wu, G.

Yang, H.

Yu, S.

Yuan, X.

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

Zeng, Y.

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

Zhao, M.

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, IEEE Trans. Antennas Propag. 57, 1783 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys.: Conf. Ser. (1)

P. Deng, X. Yuan, Y. Zeng, M. Zhao, and H. Luo, J. Phys.: Conf. Ser. 276, 012056 (2011).
[CrossRef]

Opt. Eng. (2)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[CrossRef]

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Opt. Eng. 47, 026003 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, Proc. SPIE 6747, 67470B (2007).
[CrossRef]

Other (3)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Average channel capacity, C / B , of FSO links versus link length for (a) PCBs with different spatial coherence, (b) different receiver diameters.

Fig. 2
Fig. 2

Average channel capacity, C / B , of FSO links versus link length for various spectral indices.

Fig. 3
Fig. 3

(a) Average channel capacity C / B , (b) SI of FSO links versus spectral index for different link lengths.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p I ( I ) = 2 ( a b ) ( a + b ) / 2 Γ ( a ) Γ ( b ) I ( a + b ) / 2 1 K a b ( 2 a b I ) , I > 0 ,
a = 1 exp [ σ ln X 2 ( α , D ) ] 1 , b = 1 exp [ σ ln Y 2 ( α , D ) ] 1
Φ n ( κ , α ) = A ( α ) C ˜ n 2 κ α , κ > 0 , 3 < α < 4 ,
A ( α ) = Γ ( α 1 ) cos ( α π / 2 ) / 4 π 2 ,
σ ln X 2 ( α , D ) 16.05 A ( α ) σ ˜ Rytov 2 ( α ) ( Ω G Λ ed Ω G + Λ ed ) 2 Γ ( 3 α 2 ) × η X 3 α 2 0 1 ξ 2 ( 1 Θ ¯ ed ξ ) 2 d ξ [ 1 + η X ( 1 Θ ¯ ed ξ ) 2 + Λ ed Ω G ξ 2 ( Λ ed + Ω G ) ] 3 α 2 ,
η X = [ ( 1 / 3 Θ ¯ ed / 2 + Θ ¯ ed 2 / 5 ) Γ ( 3 α / 2 ) ] 2 α 6 × { [ 2 Z ( α , Θ ¯ ed ) α 2 ( σ ˜ R 2 ( α ) ) α 6 α 2 Γ ( 6 α α 2 ) B ( α , Θ ¯ ed ) α 6 α 2 ] 2 α 6 + [ 0.0305 σ ˜ B 2 ( α ) R ( α ) / ( σ ˜ R 2 ( α ) A ( α ) ) ] 2 α 6 } 1
σ ˜ R 2 ( α ) = σ ˜ Rytov 2 ( α ) R ( α ) , σ ˜ Rytov 2 ( α ) = 1.23 C ˜ n 2 k 3 α / 2 L α / 2 ,
R ( α ) = 6.5 π 2 A ( α ) Γ ( 1 α / 2 ) sin ( π α / 4 ) / α ,
σ ˜ B 2 ( α ) = 4 A ( α ) C ˜ n 2 π 2 k 3 α / 2 L α / 2 Γ ( 1 α / 2 ) α 1 { Λ ed α 2 2 Re [ 2 α 2 α i α 2 2 F 1 2 ( 2 α 2 , α 2 ; 2 + α 2 ; Θ ¯ ed + i Λ ed ) ] }
B ( α , Θ ¯ ed ) = π 2 4 2 α / 2 Γ ( 1 α / 2 ) A ( α ) 1.23 Γ ( α / 2 ) R ( α ) Θ ¯ ed ( α 1 ) ,
Z ( α , Θ ¯ ed ) = 0 1 ξ α 4 ( 1 Θ ¯ ed ξ ) 2 × [ ( 1 Θ ¯ ed ξ ) α 2 ( 1 Θ ¯ ed ) α 1 ] 6 α 2 α d ξ .
σ ln Y 2 ( α , D ) 32.096 A ( α ) σ ˜ Rytov 2 ( α ) × 0 1 [ ( 1 Θ ¯ ed ξ ) 2 Λ ed + Ω G ] α / 2 1 exp [ η Y ( 1 Θ ¯ ed ξ ) 2 Λ ed + Ω G ] × Γ ( 1 α 2 , η Y ( 1 Θ ¯ ed ξ ) 2 Λ ed + Ω G ) d ξ ,
η Y = [ 64.192 A ( α ) σ ˜ R 2 ( α ) / ( R ( α ) ( α 2 ) ) ] 2 α 2 × [ ( 0.51 σ ˜ B 2 ( α ) ) 2 2 α + ( ln 2 ) 2 2 α ]
SI = σ I 2 ( α , D ) = exp [ σ ln X 2 ( α , D ) + σ ln Y 2 ( α , D ) ] 1.
C = B ( a b ) ( a + b ) / 2 4 π Γ ( a ) Γ ( b ) ln ( 2 ) γ ¯ ( a + b ) / 4 × G 2 , 6 6 , 1 ( ( a b ) 2 16 γ ¯ | y 1 4 , y 1 4 + 1 y 2 4 , y 2 + 2 4 , y 2 4 , y 2 + 2 4 , y 1 4 , y 1 4 ) ,

Metrics