Abstract

We introduce a new technique, spectral contrast imaging microscopy (SCIM), for super-resolution microscopic imaging. Based on a novel contrast mechanism that encodes each local spatial frequency with a corresponding optical wavelength, SCIM provides a real-time high-resolution spectral contrast microscopic image with superior contrast. We show that two microscopic objects, separated by a distance smaller than the diffraction limit of the optical system, can be spatially resolved in the SCIM image as different colors. Results with numerical simulation and experiments using a high-resolution United States Air Force target are presented. The ability of SCIM for imaging biological cells is also demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription