Abstract

We propose and demonstrate a directed optical decoder that can perform the decoding function from a two-bit electrical signal to a four-bit optical signal based on two cascaded microring resonators. We use two electrical signals regarded as a two-bit electrical signal to modulate the two microring resonators through the thermo-optic effect and four optical signals regarded as a four-bit optical signal appear at the output ports, respectively. The device operating at 10kbps is demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
    [CrossRef] [PubMed]
  2. H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
    [CrossRef]
  3. H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
    [CrossRef]
  4. A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).
  5. C. Condrat, P. Kalla, and S. Blair, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI (Association for Computing Machinery, 2011), pp.13.
    [CrossRef]
  6. R. Soref, Advances in Optoelectronics (2011).
  7. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, Opt. Lett. 35, 1620 (2010).
    [CrossRef] [PubMed]
  8. Y. H. Tian, L. Zhang, R. Q. Ji, L. Yang, P. Zhou, H. T. Chen, J. F. Ding, W. W. Zhu, Y. Y. Lu, L. X. Jia, Q. Fang, and M. B. Yu, Opt. Lett. 36, 1650 (2011).
    [PubMed]
  9. L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, X. L. Jia, Q. Fang, and M. B. Yu, Opt. Express 19, 6524 (2011).
    [CrossRef] [PubMed]
  10. Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (3)

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).

L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, and M. B. Yu, Opt. Lett. 35, 1620 (2010).
[CrossRef] [PubMed]

2007 (2)

J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
[CrossRef] [PubMed]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Blair, S.

C. Condrat, P. Kalla, and S. Blair, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI (Association for Computing Machinery, 2011), pp.13.
[CrossRef]

Caulfield, H. J.

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Chen, H. T.

Chen, P.

Condrat, C.

C. Condrat, P. Kalla, and S. Blair, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI (Association for Computing Machinery, 2011), pp.13.
[CrossRef]

Ding, J. F.

Dolev, S.

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

Fang, Q.

Hardy, J.

Ji, R. Q.

Jia, L. X.

Jia, X. L.

Jiang, Z. Y.

Kalla, P.

C. Condrat, P. Kalla, and S. Blair, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI (Association for Computing Machinery, 2011), pp.13.
[CrossRef]

Liu, Y. L.

Lu, Y. Y.

Shamir, J.

Soref, R.

Q. Xu and R. Soref, Opt. Express 19, 5244 (2011).
[CrossRef] [PubMed]

R. Soref, Advances in Optoelectronics (2011).

Soref, R. A.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Tian, Y. H.

Vikram, C. S.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Xu, Q.

Yang, L.

Yu, M. B.

Zavalin, A. I.

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).

Zhang, L.

Zhou, P.

Zhu, W. W.

Nat. Photonics (1)

H. J. Caulfield and S. Dolev, Nat. Photonics 4, 261 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (Jena) (1)

A. I. Zavalin, H. J. Caulfield, and C. S. Vikram, Optik (Jena) 121, 1300 (2010).

Photon. Nanostr. Fundam. Appl. (1)

H. J. Caulfield, R. A. Soref, and C. S. Vikram, Photon. Nanostr. Fundam. Appl. 5, 14 (2007).
[CrossRef]

Other (2)

C. Condrat, P. Kalla, and S. Blair, Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI (Association for Computing Machinery, 2011), pp.13.
[CrossRef]

R. Soref, Advances in Optoelectronics (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The proposed architecture of the device (the red line represents the closed cavity formed by the MRRs and the port A).

Fig. 2
Fig. 2

Response spectra of the device at the optical output port Y 1 with the voltages applied to the MRR1 and MRR2 being (a) both 0 V , (b) 0 and 1.99 V , (c) 1.54 and 0 V , and (d) 1.54 and 1.99 V .

Fig. 3
Fig. 3

Response spectra of the device at the output port Y 2 with the voltages applied to the MRR1 and MRR2 being (a) both 0 V , (b) 0 and 1.99 V , (c) 1.54 and 0 V , and (d) 1.54 and 1.99 V .

Fig. 4
Fig. 4

Response spectra of the device at the output port Y 3 with the voltages applied to the MRR1 and MRR2 being (a) both 0 V , (b) 0 and 1.99 V , (c) 1.54 and 0 V , and (d) 1.54 and 1.99 V .

Fig. 5
Fig. 5

Response spectra of the device at the output port Y 4 with the voltages applied to the MRR1 and MRR2 being (a) both 0 V , (b) 0 and 1.99 V , (c) 1.54 and 0 V , and (d) 1.54 and 1.99 V .

Fig. 6
Fig. 6

Signals applied to (a) MRR1 and (b) MRR2, (c) the result at the drop port and (d) the result at the through port of the device.

Metrics