Abstract

The method allows retrieval of the absorbance of a sample without the need for a reference measurement. The method measures the dynamic variation of frequency resolution as the waveform is being acquired. In terahertz wave time-domain spectroscopy, the frequency resolution increases as the temporal window increases. Therefore, narrow absorption peaks will appear in the spectrum when the temporal window is long enough to resolve the peak. By measuring the dynamic values of each frequency component at specific points in time, a reference value and a peak value are extracted and, hence, the self-referenced is achieved. In addition, the method provides a mechanism to remove the effects of echoes, which enables arbitrary temporal window length and, thus, achieves high-resolution frequency. Examples of extraction of the water vapor lines and resonant features in gas and semiconductors are demonstrated in transmission and reflection geometries.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).
    [CrossRef] [PubMed]
  2. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
    [CrossRef]
  3. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, Opt. Express 15, 12060 (2007).
    [CrossRef] [PubMed]
  4. Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
    [CrossRef]
  5. C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
    [CrossRef]
  6. Existing and Potential Standoff Explosives Detection Techniques (National Research Council of the National Academies, 2004).
  7. H. Van De Hulst, Light Scattering by Small Particles, 1st ed. (Dover Publications, 1981).
  8. F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
    [CrossRef]
  9. A. Koch and J. Weber, Appl. Spectrosc. 52, 970 (1998).
    [CrossRef]
  10. O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
    [CrossRef]
  11. L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
    [CrossRef]
  12. W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).
  13. P. U. Jepsen, U. Moller, and H. Merbold, Opt. Express 15, 14717 (2007).
    [CrossRef] [PubMed]

2009 (1)

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

2008 (2)

O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
[CrossRef]

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

2007 (3)

2006 (1)

F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
[CrossRef]

2005 (1)

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

2001 (1)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

1998 (1)

1989 (1)

Alexander, P.

O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
[CrossRef]

Baker, C.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Bastiaans, G. J.

Chen, J.

Chen, Y.

Cole, B.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Cole, B. E.

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Deng, C.

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Exter, M.

Fattinger, C.

Gan, F.

F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
[CrossRef]

Gladden, L. F.

O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
[CrossRef]

Grischkowsky, D.

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Hirsch, O.

O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
[CrossRef]

Hogbin, M.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Jepsen, P. U.

Kemp, M.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Kersting, R.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Koch, A.

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Li, W.

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

Lo, T.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Merbold, H.

Mo, J.

F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
[CrossRef]

Moller, U.

Ruan, G.

F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
[CrossRef]

Shen, Y.

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Taday, P. F.

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Tribe, W.

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Van De Hulst, H.

H. Van De Hulst, Light Scattering by Small Particles, 1st ed. (Dover Publications, 1981).

Weber, J.

Zhang, C.

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

Zhang, L.

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Zhang, X.

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Zhang, X.-C.

J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, Opt. Express 15, 12060 (2007).
[CrossRef] [PubMed]

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Zhao, H.

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Zhong, H.

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Shen, T. Lo, P. F. Taday, B. E. Cole, W. Tribe, and M. Kemp, Appl. Phys. Lett. 86, 241116 (2005).
[CrossRef]

L. Zhang, H. Zhong, C. Deng, X. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 091117 (2008).
[CrossRef]

Appl. Spectrosc. (1)

Chemom. Intell. Lab. Syst. (1)

F. Gan, G. Ruan, and J. Mo, Chemom. Intell. Lab. Syst. 82, 59 (2006).
[CrossRef]

J. Appl. Phys. (1)

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).
[CrossRef]

Microelectron. J. (1)

O. Hirsch, P. Alexander, and L. F. Gladden, Microelectron. J. 39, 841–848 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (1)

C. Baker, T. Lo, W. Tribe, B. Cole, M. Hogbin, and M. Kemp, Proc. IEEE 95, 1559 (2007).
[CrossRef]

Proc. SPIE (1)

W. Li, H. Zhong, L. Zhang, C. Deng, and C. Zhang, Proc. SPIE 7158, 71581M1 (2009).

Other (2)

Existing and Potential Standoff Explosives Detection Techniques (National Research Council of the National Academies, 2004).

H. Van De Hulst, Light Scattering by Small Particles, 1st ed. (Dover Publications, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Waveform with two temporal window lengths t A and t B . (b) Spectrum at t A and t B , which is different in case there is a peak.

Fig. 2
Fig. 2

S values for two frequencies. At 0.695 THz , no peak is present and plot remains constant. At 0.555 THz , a peak is present and plot shows the predicted decay.

Fig. 3
Fig. 3

Spectrum of water vapor lines computed with the self-referenced method and with the traditional method. Beyond 1.8 THz , DR < 10 dB and the method generates noisier data.

Fig. 4
Fig. 4

Absorbance spectra of (a) GaAs and (b) InAs taken in reflection geometry with a THz-ABCD system. The peak at 18.3 THz in the self-referenced results corresponds to the two-phonon absorption of an Si beam splitter.

Fig. 5
Fig. 5

(a) Waveform with an echo. (b) Spectrum with the interference caused by the echo. (c) Uncorrected value of the frequency component at 0.555 THz . (d) Corrected value of the component at 0.555 THz . (e) Absorbance calculated with the self-referenced method with two temporal window lengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Absorbance ( ω ) = ln ( I ref ( ω ) I peak ( ω ) ) = ln ( S A ( ω ) S B ( ω ) ) ,
S ( ω a , σ , c a , Q ) S 0 ( ω a ) [ β 1 ( σ , c a ) + β 2 ( σ , c a ) Q 2 ] ,

Metrics