Abstract

Herein, we report a facile approach for rapid and maskless production of subwavelength structured antireflective surfaces with high and broadband transmittance—direct laser interference ablation. The interfered laser beams were introduced into the surface of a bare optical substrate, where structured surfaces consisting of a micropillar array were produced by two-step laser irradiation in the time frame of seconds. A multiple exposure of the two-beam interference approach was proposed instead of multiple-beam interference to simply realize planar patterns of a high aspect ratio. Tall sinusoidal pillars were created and shaped by pulse shot number control. As an example of the application, zinc sulfide substrates were processed with the technology, from which high transmission at an infrared wavelength, over 92%, at normal incidence was experimentally achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
    [CrossRef]
  2. P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
    [CrossRef]
  3. M. Ibn-Elhaj and M. Schadt, Nature 410, 796 (2001).
    [CrossRef] [PubMed]
  4. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).
  5. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 1154 (1993).
    [CrossRef] [PubMed]
  6. Y. M. Song and Y. T. Lee, Opt. Quantum Electron. 41, 771 (2010).
    [CrossRef]
  7. M. Karlsson and F. Nikolajeff, Opt. Express 11, 502 (2003).
    [CrossRef] [PubMed]
  8. C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
    [CrossRef]
  9. Y.-J. Hung, S.-L. Lee, and L. A. Coldren, Opt. Express 18, 6841 (2010).
    [CrossRef] [PubMed]
  10. J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
    [CrossRef] [PubMed]
  11. D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349(2005).
    [CrossRef]
  12. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
    [CrossRef]
  13. M. Gower, Proc. SPIE 4559, 53 (2001).
    [CrossRef]
  14. D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
    [CrossRef] [PubMed]
  15. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
    [CrossRef]
  16. D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
    [CrossRef]
  17. Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
    [CrossRef]
  18. W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
    [CrossRef]
  19. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
    [CrossRef]
  20. N. D. Lai, W.-P. Liang, J.-H. Lin, C.-C. Hsu, and C.-H. Lin, Opt. Express 13, 9605 (2005).
    [CrossRef] [PubMed]
  21. D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
    [CrossRef]
  22. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18, 13063 (2010).
    [CrossRef] [PubMed]

2011 (2)

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

2010 (8)

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
[CrossRef]

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Y. M. Song and Y. T. Lee, Opt. Quantum Electron. 41, 771 (2010).
[CrossRef]

Y.-J. Hung, S.-L. Lee, and L. A. Coldren, Opt. Express 18, 6841 (2010).
[CrossRef] [PubMed]

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18, 13063 (2010).
[CrossRef] [PubMed]

2009 (1)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

2005 (2)

2003 (1)

2002 (1)

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

2001 (2)

M. Ibn-Elhaj and M. Schadt, Nature 410, 796 (2001).
[CrossRef] [PubMed]

M. Gower, Proc. SPIE 4559, 53 (2001).
[CrossRef]

1998 (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

1993 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Abbott, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Aydina, C.

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Bläsi, B.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Chen, Q.-D.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Chi, L.-F.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Choi, H. J.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Coldren, L. A.

Das, S.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Ding, Y.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Goldstein, J.

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Gombert, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Gower, M.

M. Gower, Proc. SPIE 4559, 53 (2001).
[CrossRef]

Guo, R.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Hao, J.-Y.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Hobbs, D. S.

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349(2005).
[CrossRef]

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Hsu, C.-C.

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Hung, Y.-J.

Hutley, M. C.

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

Ibn-Elhaj, M.

M. Ibn-Elhaj and M. Schadt, Nature 410, 796 (2001).
[CrossRef] [PubMed]

Jeon, S.

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

Jiang, L.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Jiao, J.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Kang, K.

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

Karlsson, M.

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Lai, N. D.

Lee, S.-L.

Lee, Y. T.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18, 13063 (2010).
[CrossRef] [PubMed]

Y. M. Song and Y. T. Lee, Opt. Quantum Electron. 41, 771 (2010).
[CrossRef]

Leem, J. W.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

Li, Y.

Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
[CrossRef]

Liang, W.-P.

Lin, C.-H.

Lin, J.-H.

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Lin, X.-F.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Lu, N.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

MacLeod, B. D.

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349(2005).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
[CrossRef]

Morris, G. M.

Nikolajeff, F.

Niu, L.-G.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Park, J.

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

Qi, D.-P.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Raguin, D. H.

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Schadt, M.

M. Ibn-Elhaj and M. Schadt, Nature 410, 796 (2001).
[CrossRef] [PubMed]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Sonek, G. J.

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Song, Y. M.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18, 13063 (2010).
[CrossRef] [PubMed]

Y. M. Song and Y. T. Lee, Opt. Quantum Electron. 41, 771 (2010).
[CrossRef]

Sun, H.-B.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Wang, J. N.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

Wang, W.-T.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Wang, Z. L.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Wei, Y.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Wittwer, V.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Wu, D.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Wu, S.-Z.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Wu, W.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Xia, H.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Xu, B.-B.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Xu, H.-B.

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Xu, Y.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
[CrossRef]

Yao, J.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Yao, X.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Yoon, S.

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

Yu, J. S.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, Opt. Express 18, 13063 (2010).
[CrossRef] [PubMed]

Yuan, D.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

Zaslavsky, A.

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Zhang, J.

Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
[CrossRef]

Zhang, Y.-L.

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, Adv. Funct. Mater. 20, 3484 (2010).
[CrossRef]

Adv. Mater. (1)

D. Wu, S.-Z. Wu, Q.-D. Chen, Y.-L. Zhang, J. Yao, X. Yao, L.-G. Niu, J. N. Wang, L. Jiang, and H.-B. Sun, Adv. Mater. 23, 545 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Aydina, A. Zaslavsky, G. J. Sonek, and J. Goldstein, Appl. Phys. Lett. 80, 2242 (2002).
[CrossRef]

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, Appl. Phys. Lett. 94, 263118(2009).
[CrossRef]

J. Phys. Chem. C (1)

W.-T. Wang, N. Lu, J.-Y. Hao, H.-B. Xu, D.-P. Qi, and L.-F. Chi, J. Phys. Chem. C 114, 1989 (2010).
[CrossRef]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, Nano Today 5, 117 (2010).
[CrossRef]

Nat. Photon. (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nat. Photon. 1, 176 (2007).

Nature (2)

P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).
[CrossRef]

M. Ibn-Elhaj and M. Schadt, Nature 410, 796 (2001).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Quantum Electron. (1)

Y. M. Song and Y. T. Lee, Opt. Quantum Electron. 41, 771 (2010).
[CrossRef]

Proc. SPIE (2)

D. S. Hobbs and B. D. MacLeod, Proc. SPIE 5786, 349(2005).
[CrossRef]

M. Gower, Proc. SPIE 4559, 53 (2001).
[CrossRef]

Small (1)

J. Park, S. Yoon, K. Kang, and S. Jeon, Small 6, 1981 (2010).
[CrossRef] [PubMed]

Soft Matter (1)

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, V. Wittwer, Sol. Energy Mater. Sol. Cells 54, 333(1998).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, Sol. Energy Mater. Sol. Cells 95, 669 (2011).
[CrossRef]

Other (1)

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of multiple exposure of TBIA: BS, beam splitter; RF, reflector; AN, attenuation mirror. (b) Projection of diffraction spots of the micropillar array that was actually created by the TBIA.

Fig. 2
Fig. 2

(a) Absorption of ZnS ranging from 200 to 500 nm . The solid curve represents absorption of bare ZnS, while the dashed curve represents ZnS with the grating surface. (b) Gratings of period of 1 μm . Periodic square arrangement pillars of (c) 1, (d) 2, (e) 3, and (f)  4 μm . The scale bar for (b)–(f) represents 5 μm .

Fig. 3
Fig. 3

(a)–(c) SEM images of different depth and morphologies of micropillars by three times exposure of TBIA. (d) Cross-sectional image of hexagonal arrangement arrays with the depth of 2.57 μm . Inset, depth increase with exposure time (10 pulse shots per second). (e) Simulation of exchanges with interaction between gratings and two 355 nm interference beams by the FDTD method. The blue dashed profile represents the initial gratings formed by D-LIA. The scale bar represents 5 μm each.

Fig. 4
Fig. 4

(a) Transmittance of single- and double-sided ARSs-ZnS. (b) Transmittance of double-sided ARSs-ZnS with different pillar depth. (c) Transmittance of double-sided ARSs-ZnS with different period. (d) Transmittance of double-sided ARSs-ZnS with incident angles ranging from 0 ° to 40 ° .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ F 2 sin ( ϕ / 2 ) ,
h min = λ P 4 n 1 n 2 ,

Metrics