Abstract

We report optofluidic waveguides made by filling microchannels in aerogel with water. The aerogel cladding is a nanoporous material with an extremely low refractive index of ~1.05, giving a large index step from the water core. Channels were formed by removing embedded optical fibers, which could be nonuniform or multiple. The porosity of the aerogel allowed air to be displaced from the channel, preventing the trapping of bubbles. The attenuation of red light in the highly multimode water core waveguide was no greater than 1.5dB/cm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
    [CrossRef]
  3. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, Opt. Express 12, 6446 (2004).
    [CrossRef] [PubMed]
  4. H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
    [CrossRef] [PubMed]
  5. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
    [CrossRef]
  6. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, Opt. Lett. 32, 3080 (2007).
    [CrossRef] [PubMed]
  7. L. M. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 34, 2724 (2009).
    [CrossRef] [PubMed]
  8. L. M. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, Opt. Express 19, 764 (2011).
    [CrossRef] [PubMed]
  9. J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
    [CrossRef]
  10. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  11. J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
    [CrossRef]
  12. V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
    [CrossRef]

2011 (1)

2009 (2)

L. M. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 34, 2724 (2009).
[CrossRef] [PubMed]

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

2008 (2)

J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

2004 (2)

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, Opt. Express 12, 6446 (2004).
[CrossRef] [PubMed]

2001 (1)

J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
[CrossRef]

2000 (1)

Barber, J. P.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

Barrios, C. A.

Birks, T. A.

Casquel, R.

Deamer, D. W.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

England, R.

Gangopadhyay, K.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Gangopadhyay, S.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, Opt. Express 12, 6446 (2004).
[CrossRef] [PubMed]

Griol, A.

Grogan, M. D.

Grogan, M. D. W.

Gylfason, K. B.

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

Holgado, M.

Hossain, M.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Kang, J. H.

J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
[CrossRef]

Kim, H. C.

Kim, Y. C.

J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
[CrossRef]

Korampally, V.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Leon-Saval, S. G.

Longtin, J. P.

J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
[CrossRef]

Manor, R.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Miller, R. D.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Mukherjee, S.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Norris, P. M.

J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
[CrossRef]

Park, J. K.

J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
[CrossRef]

Polo-Parada, L.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Risk, W. P.

Russell, P. St. J.

Sánchez, B.

Schmidt, H.

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

Sohlström, H.

Sun, J.

J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
[CrossRef]

Temkin, H.

Wadsworth, W. J.

Williams, R.

Xiao, L. M.

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Yin, D.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

Yun, M.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, Appl. Phys. Lett. 85, 3477 (2004).
[CrossRef]

IEEE Sens. J. (1)

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, IEEE Sens. J. 9, 1711 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

J. Sun, J. P. Longtin, and P. M. Norris, J. Non-Cryst. Solids 281, 39 (2001).
[CrossRef]

Lab Chip (1)

J. H. Kang, Y. C. Kim, and J. K. Park, Lab Chip 8, 176 (2008).
[CrossRef]

Microfluid. Nanofluid. (1)

H. Schmidt and A. R. Hawkins, Microfluid. Nanofluid. 4, 3 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Formation of optofluidic waveguides in aerogel. (a) The precursor sol is poured over a fiber held in a box, allowed to gel, then processed into aerogel. (b) The fiber is pulled out of the aerogel block to leave a microchannel. (c) Water is pumped into the microchannel through a capillary. (d) Light is coupled into the water column via a reinserted fiber.

Fig. 2
Fig. 2

Cleaved cross-sections of microchannels with diameters (a) 100, (b) 35, (c) 23, and (d)  4 μm . The first three images are scanning electron micrographs (SEMs) while the last is an optical micrograph. (e) SEM of the aerogel surface; the scale bar is 0.5 μm long.

Fig. 3
Fig. 3

Side views of a ~ 6 cm long tapered microchannel in aerogel, 125 μm in diameter at its widest. (a) A montage of images, 55 × compressed horizontally. (b) The broken tapered fiber being removed, as seen at a wider part of the channel.

Fig. 4
Fig. 4

Water in 125 μm diameter microchannels in aerogel. (a) A water column (injected from the left) partly filling a microchannel. (b) The spherical droplet at the end of a completely filled microchannel. (c) Two parallel air-filled microchannels (d) combining at a Y junction. (e) Two separate water columns merging at the Y junction shown in (d).

Fig. 5
Fig. 5

Elimination of the air gap between two 125 μm diam eter water columns, as (left to right) the lower column is pushed towards the static upper column and joins it. (The contrast in these images has been digitally enhanced.)

Fig. 6
Fig. 6

(a), (b) Guidance of 635 nm laser light in water columns of different lengths in a 125 μm diameter aerogel microchannel. The light is incident from the left in a fiber, and emerges from the end of the water column toward the right. The fiber ends at the bright scatter point about 2 mm inside the 10 mm high aerogel block. (c) (left to right) Images taken at 40 s intervals at the end of a water column, as the water evaporates.

Metrics