Abstract

We report what is believed to be the first resonantly pumped laser operation based on Er3+-doped disordered double tungstate single crystal. Efficient laser operation of an Er3+:NaY(WO4)2 laser at 1609.6nm was demonstrated with the naturally wideband, 20nm, InGaAsP/InP laser diode pumping at 1501nm. Laser wavelength tunability of 34nm was also demonstrated based on disorder-broadened emission features of Er3+:NaY(WO4)2 single crystal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, Laser Phys. 19, 867 (2009).
    [CrossRef]
  2. T. Sanamyan, J. Simmons, and M. Dubinskii, Laser Phys. Lett. 7, 569 (2010).
    [CrossRef]
  3. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
    [CrossRef]
  4. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, Opt. Lett. 33, 1524 (2008).
    [CrossRef] [PubMed]
  5. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, A. A. Kornienko, E. B. Dunina, S. Hartung, and G. Huber, J. Opt. Soc. Am. B 15, 1205 (1998).
    [CrossRef]
  6. J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, Opt. Lett. 33, 2548 (2008).
    [CrossRef] [PubMed]
  7. J. H. Huang, Y. J. Chen, X. H. Gong, Y. F. Lin, Z. D. Luo, and Y. D. Huang, J. Opt. Soc. Am. B 27, 2605 (2010).
    [CrossRef]
  8. http://www.nlight.net/products.html.
  9. http://www.qpclasers.com/products_BLockSA.html.
  10. N. Ter-Gabrielyan, V. Fromzel, L. D. Merkle, and M. Dubinskii, Opt. Mater. Express 1, 223 (2011).
    [CrossRef]
  11. M. Rico, V. Volkov, C. Cascales, and C. Zaldo, Chem. Phys. 279, 73 (2002).
    [CrossRef]
  12. M. Rico, A. Méndez-Blas, V. Volkov, M. A. Monge, C. Cascales, C. Zaldo, A. Kling, and M. T. Fernández, J. Opt. Soc. Am. B 23, 2066 (2006).
    [CrossRef]
  13. E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
    [CrossRef]
  14. B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
    [CrossRef]
  15. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, Opt. Commun. 281, 5855(2008).
    [CrossRef]
  16. N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, Opt. Express 17, 7159(2009).
    [CrossRef] [PubMed]
  17. N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, Opt. Lett. 36, 1218 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (3)

E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, Laser Phys. 19, 867 (2009).
[CrossRef]

N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, Opt. Express 17, 7159(2009).
[CrossRef] [PubMed]

2008 (3)

2006 (1)

2005 (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

2002 (1)

M. Rico, V. Volkov, C. Cascales, and C. Zaldo, Chem. Phys. 279, 73 (2002).
[CrossRef]

1998 (1)

1982 (1)

B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
[CrossRef]

Cascales, C.

Chen, Y.

Chen, Y. J.

Chicklis, E. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Díaz, F.

E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
[CrossRef]

Dubinskii, M.

Dunina, E. B.

Fernández, M. T.

Francis, M. P.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Fromzel, V.

Gong, X.

Gong, X. H.

Hartung, S.

Huang, J.

Huang, J. H.

Huang, Y.

Huang, Y. D.

Huber, G.

Ikesue, A.

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
[CrossRef]

Kling, A.

Konves, J. R.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Kornienko, A. A.

Kuleshov, N. V.

Lagatsky, A. A.

Lin, Y.

Lin, Y. F.

Lukasiewicz, T.

Luo, Z.

Luo, Z. D.

Méndez-Blas, A.

Merkle, L. D.

Michael, A.

N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, Opt. Express 17, 7159(2009).
[CrossRef] [PubMed]

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, Opt. Commun. 281, 5855(2008).
[CrossRef]

Mikhailov, V. P.

Monge, M. A.

Newburgh, G. A.

N. Ter-Gabrielyan, M. Dubinskii, G. A. Newburgh, A. Michael, and L. D. Merkle, Opt. Express 17, 7159(2009).
[CrossRef] [PubMed]

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, Laser Phys. 19, 867 (2009).
[CrossRef]

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, Opt. Commun. 281, 5855(2008).
[CrossRef]

Podlipensky, A. V.

Rico, M.

Ryba-Romanowski, W.

Sanamyan, T.

T. Sanamyan, J. Simmons, and M. Dubinskii, Laser Phys. Lett. 7, 569 (2010).
[CrossRef]

Setzler, S. D.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Simmons, J.

T. Sanamyan, J. Simmons, and M. Dubinskii, Laser Phys. Lett. 7, 569 (2010).
[CrossRef]

Ter-Gabrielyan, N.

Volkov, V.

Young, Y. E.

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Zaldo, C.

E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
[CrossRef]

M. Rico, A. Méndez-Blas, V. Volkov, M. A. Monge, C. Cascales, C. Zaldo, A. Kling, and M. T. Fernández, J. Opt. Soc. Am. B 23, 2066 (2006).
[CrossRef]

M. Rico, V. Volkov, C. Cascales, and C. Zaldo, Chem. Phys. 279, 73 (2002).
[CrossRef]

Zharikov, E. V.

E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
[CrossRef]

Chem. Phys. (1)

M. Rico, V. Volkov, C. Cascales, and C. Zaldo, Chem. Phys. 279, 73 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

N. Ter-Gabrielyan, L. D. Merkle, G. A. Newburgh, and M. Dubinskii, Laser Phys. 19, 867 (2009).
[CrossRef]

Laser Phys. Lett. (1)

T. Sanamyan, J. Simmons, and M. Dubinskii, Laser Phys. Lett. 7, 569 (2010).
[CrossRef]

MRS Bull. (1)

E. V. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271(2009).
[CrossRef]

Opt. Commun. (1)

L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, and M. Dubinskii, Opt. Commun. 281, 5855(2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (2)

http://www.nlight.net/products.html.

http://www.qpclasers.com/products_BLockSA.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Polarization resolved I 15 / 2 I 13 / 2 4 4 absorption cross sections of the uniaxial Er:NaYW single crystal at 77 K (π polarization, 1, blue; σ polarization 2, red). Presented for comparison are the emission spectrum of a nonnarrowed (output bandwidth 20 nm FWHM) InGaAsP/InP diode laser pump module used in our experiments (3, wine, arbitrary units) and the 77 K OA of Er:YAG (4, green, arbitrary units). Resolution: 0.1 nm .

Fig. 2
Fig. 2

Emission spectrum of the uniaxial Er:NaYW single crystal at 77 K (π polarization, blue; σ polarization, red). Combined reciprocity and F-L.

Fig. 3
Fig. 3

Simplified energy level diagram of the Er:NaYW single crystal at 77 K . Shown are the levels of the I 13 / 2 4 and I 15 / 2 4 multiplets relevant to resonantly pumped laser operation at 1.6 μm . The numbers to the left are the energies of the Stark split multiplet components, the numbers to the right are the corresponding Boltzmann populations of the levels at 77 K .

Fig. 4
Fig. 4

Quasi-cw laser output versus absorbed pump power for resonantly pumped cryogenically cooled Er 3 + ( 1 at. % ) : NaY ( WO 4 ) 2 laser with spectrally nonselective cavity. Quasi-cw regime pulse duration, 10 ms ; pulse repetition frequency, 10 Hz .

Fig. 5
Fig. 5

Experimental tunability of cryogenically cooled Er 3 + ( 1 at. % ) : NaY ( WO 4 ) 2 laser in selective cavity with the three-stage birefringent tuner.

Metrics