Abstract

This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell’s equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media

Xiang-Hua Wang, Wen-Yan Yin, and Zhi Zhang (David) Chen
Opt. Express 21(18) 20565-20576 (2013)

Propagation of Plane Electromagnetic Waves in Inhomogeneous Media

Harold Osterberg
J. Opt. Soc. Am. 48(8) 513-521 (1958)

Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: an efficient FDTD modeling

Samad Jafar-Zanjani, Jierong Cheng, and Hossein Mosallaei
Appl. Opt. 55(11) 2967-2975 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription