Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Induced transparency in nanoscale plasmonic resonator systems

Not Accessible

Your library or personal account may give you access

Abstract

An optical effect analogous to electromagnetically induced transparency (EIT) is observed in nanoscale plasmonic resonator systems. The system consists of a slot cavity as well as plasmonic bus and resonant waveguides, where the phase-matching condition of the resonant waveguide is tunable for the generation of an obvious EIT-like coupled resonator-induced transparency effect. A dynamic theory is utilized to exactly analyze the influence of physical parameters on transmission characteristics. The transparency effect induced by coupled resonance may have potential applications for nanoscale optical switching, nanolaser, and slow-light devices in highly integrated optical circuits.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple plasmon-induced transparencies in coupled-resonator systems

Jianjun Chen, Chen Wang, Ru Zhang, and Jinghua Xiao
Opt. Lett. 37(24) 5133-5135 (2012)

Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide

Guangtao Cao, Hongjian Li, Shiping Zhan, Zhihui He, Zhibo Guo, Xiuke Xu, and Hui Yang
Opt. Lett. 39(2) 216-219 (2014)

Supplementary Material (1)

Media 1: MOV (224 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved