Abstract

Distributed antireflection (AR) layers with different composition ratios of ITO and SiO2 formed on an ITO electrode of GaN-based LEDs provide substantial enhancement in light-extraction efficiency. By using the coradio frequency magnetron sputtering deposition, four 50nm thick AR layers with graduated refractive indices were fabricated. The effect of the AR layers on enhancing the efficiency of the LED device was analyzed by electroluminescence (EL) and I-V measurements. As a result, the EL intensity of the LED device grown on the patterned sapphire substrate with AR layers was increased by up to 13% compared to the conventional patterned sapphire substrate-applied LED device without AR layers at a drive current of 20mA. The AR layers on top of the LED device gradually changed the refractive indices between ITO (n=2.1) and air (n=1.0), which minimized the total internal reflection of generated light. And no degradation in the electrical characteristic of the LEDs was observed according to the I-V measurements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
    [CrossRef]
  2. H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
    [CrossRef]
  3. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
    [CrossRef]
  4. M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
    [CrossRef]
  5. H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).
  6. L. Rayleigh, Proc. London Math. Soc. s1-11, 51 (1879).
    [CrossRef]
  7. K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
    [CrossRef]
  8. Fullwave 6.1 RSOFT design group (2008), http://www.rsoftdesign.com.

2011 (1)

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

2008 (2)

Fullwave 6.1 RSOFT design group (2008), http://www.rsoftdesign.com.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

2005 (1)

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

2004 (1)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

2000 (1)

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

1998 (1)

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

1879 (1)

L. Rayleigh, Proc. London Math. Soc. s1-11, 51 (1879).
[CrossRef]

Asano, T.

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Baek, J. H.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

Byeon, K. J.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Cho, J. Y.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

DenBaars, S. P.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Fujita, S.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Fujta, M.

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Gao, H.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Hong, E. J.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Jhin, J.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Kawakami, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Lee, H.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Lee, S. H.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Li, J.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Nakamura, S.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Narukawa, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Noda, S.

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Omae, K.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Park, H.

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Rayleigh, L.

L. Rayleigh, Proc. London Math. Soc. s1-11, 51 (1879).
[CrossRef]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

Takahashi, S.

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Tanaka, Y.

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Wang, G.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

Yan, F.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Zeng, Y.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Zhang, Y.

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Appl. Phys. Lett. (1)

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

J. Appl. Phys. (1)

H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys. 103, 014314-1 (2008).

Phys. Status Solidi A (1)

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, Phys. Status Solidi A 178, 331 (2000).
[CrossRef]

Proc. London Math. Soc. (1)

L. Rayleigh, Proc. London Math. Soc. s1-11, 51 (1879).
[CrossRef]

Science (1)

M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Science 308, 1296 (2005).
[CrossRef]

Thin Solid Films (1)

K. J. Byeon, E. J. Hong, H. Park, J. Y. Cho, S. H. Lee, J. Jhin, J. H. Baek, and H. Lee, Thin Solid Films 519, 2241 (2011).
[CrossRef]

Other (1)

Fullwave 6.1 RSOFT design group (2008), http://www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of overall process flow, (b) SEM cross-sectional image of the LED structure with AR layers.

Fig. 2
Fig. 2

(a) Analysis of composition ratio of the AR layers on the LED devices by AES. (b) Analysis of refractive indices of the AR layers on the LED devices by elipsometry.

Fig. 3
Fig. 3

The simplified LED structure without and with the AR layers for 3D-FDTD simulation and effect of the AR layer on the improvement of EL emission. The data were obtained by 3D-FDTD based simulation using FullWAVE ver 6.1. Software (Rsoft).

Fig. 4
Fig. 4

(a) EL intensities of the LED devices with respect to wavelength with/without the AR layers, (b) I-V characteristics of the LED devices with/without the AR layers.

Metrics