Abstract

We report on femtosecond pump–probe experiments on two different photoinitiators in solution. These two molecules have recently appeared as attractive candidates for far-field optical lithography based on stimulated-emission- depletion (STED) inspired approaches aiming at beating Abbe’s diffraction limit. For the case of 7-diethylamino-3-thenoylcoumarin (DETC), we find that stimulated emission clearly dominates over excited-state absorption, whereas the opposite holds true for the case of isopropylthioxanthone. We argue that it is desirable that stimulated emission dominates over excited-state absorption as depletion mechanism in STED photoresists. Thus, DETC is an attractive corresponding photoinitiator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
    [CrossRef] [PubMed]
  2. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
    [CrossRef]
  3. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
    [CrossRef] [PubMed]
  4. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
    [CrossRef] [PubMed]
  5. J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
    [CrossRef] [PubMed]
  6. J. Fischer, T. Ergin, and M. Wegener, Opt. Lett. 36, 2059(2011).
    [CrossRef] [PubMed]
  7. F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
    [CrossRef]
  8. M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
    [CrossRef] [PubMed]
  9. O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
[CrossRef] [PubMed]

2009 (3)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

2003 (1)

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Allonas, X.

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Dietlin, C.

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Ergin, T.

Fischer, J.

J. Fischer, T. Ergin, and M. Wegener, Opt. Lett. 36, 2059(2011).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
[CrossRef] [PubMed]

Fouassier, J. P.

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

Malval, J. P.

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Michel, H.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

Morlet-Savary, F.

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Salverda, J. M.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

Schalk, O.

O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).
[CrossRef] [PubMed]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Unterreiner, A. N.

O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).
[CrossRef] [PubMed]

van Grondelle, R.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

van Mourik, F.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

van Stokkum, I. H. M.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
[CrossRef] [PubMed]

Wegener, M.

J. Fischer, T. Ergin, and M. Wegener, Opt. Lett. 36, 2059(2011).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
[CrossRef] [PubMed]

Wendling, M.

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

J. Fischer, G. von Freymann, and M. Wegener, Adv. Mater. 22, 3578 (2010).
[CrossRef] [PubMed]

Biophys. J. (1)

M. Wendling, F. van Mourik, I. H. M. van Stokkum, J. M. Salverda, H. Michel, and R. van Grondelle, Biophys. J. 84, 440 (2003).
[CrossRef] [PubMed]

J. Photochem. Photobiol., A (1)

F. Morlet-Savary, X. Allonas, C. Dietlin, J. P. Malval, and J. P. Fouassier, J. Photochem. Photobiol., A 197, 342(2008).
[CrossRef]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, Nat. Photonics 3, 144 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

O. Schalk and A. N. Unterreiner, Phys. Chem. Chem. Phys. 12, 655 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Proc. Natl. Acad. Sci. USA 97, 8206 (2000).
[CrossRef] [PubMed]

Science (2)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, Science 324, 910 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, Science 324, 913 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of transitions in a photoinitiator molecule for STED optical lithography. Pump laser photons (pink) excite molecules from the S 0 ground state into an excited state S 1 * . After vibrational relaxation to the S 1 state, probe photons (green) can bring the molecule back to its ground state via SE or into yet higher-energy states via ESA. After ISC to the triplet state T 1 , TTA of probe photons may occur. (b) Simple rate-equation model for analyzing the experimental data. The time constants τ 1 and τ 2 describe the population of S 1 * and S 1 , respectively.

Fig. 2
Fig. 2

(a) Molar decadic extinction coefficient (ϵ) and fluorescence spectrum of ITX in ethanol solution. (c) Time- dependent change of the OD, Δ OD (dots), after 387.5 nm excitation for different probe wavelengths as indicated. Δ OD < 0 corresponds to increased probe transmittance upon optical pumping. The solid curves result from a global fit of a simple rate-equation model to these data. (b) Fit coefficients for the sum of SE and ESA (blue) and for TTA (red).

Fig. 3
Fig. 3

Same as Fig. 2 but for the photoinitiator DETC in ethanol solution. Note the different time scale. Inset in (c): exemplary transient anisotropy r ( t ) at 532 nm .

Metrics