Abstract

Two-photon fluorescence (TPF) is one of the most important discoveries for biological imaging. Although a cw laser is known to excite TPF, its application in TPF imaging has been very limited due to the perceived low efficiency of excitation. Here we directly excited fluorophores with an IR cw laser used for optical trapping and achieved single-molecule fluorescence sensitivity: discrete stepwise photobleaching of enhanced green fluorescent proteins was observed. The single-molecule fluorescence intensity analysis and on-time distribution strongly indicate that a cw laser can generate TPF detectable at the single-molecule level, and thus opens the door to single-molecule TPF imaging using cw lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription