Abstract

The ultraviolet (UV) band edge photorefractivity of Sn-doped LiNbO3 (LN:Sn) at 325nm has been investigated. A sharp decrease of beam distortion, which is accompanied by a significant increase in the photoconductivity, is observed in LN:Sn crystals with Sn-doping concentrations at or above 2.0mol%. The diffraction efficiency, the holographic recording sensitivity and response rate, and the two-wave coupling gain coefficient are greatly enhanced when the Sn-doping concentration reaches 2.0mol% or more. Unlike LiNbO3 doped with Hf in which the UV gratings can be erased easily by a red beam, the UV gratings in LN:Sn can withstand long-term red beam illumination. Electrons are determined to be the dominant light-induced charge carriers responsible for the UV band edge photorefraction. The observed enhancement on the UV band edge photorefractivity is found to be associated with the showup of an absorption band around 325nm in LN:Sn crystals with Sn-doping concentrations at or above 2.0mol%.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription