Abstract

We investigate the strong electromagnetic coupling that settles in dual metallic grating structures. This coupling is evidenced to lead to a perfect optical extinction in the transmission spectrum. The behavior of this perfect extinction that strongly depends on the longitudinal space and the lateral displacement between the two gratings can be explained by a simple model that describes the interference between a propagating mode and a couple of evanes cent modes. The results show that the electromagnetic transmission of the structure can be tuned by controlling the position of this perfect transmission extinction and thus pave the way to new types of infrared tunable filters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
    [CrossRef] [PubMed]
  3. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, Opt. Lett. 31, 516 (2006).
    [CrossRef] [PubMed]
  4. C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
    [CrossRef]
  5. F. Miyamaru and M. Hangyo, Phys. Rev. B 71, 165408(2005).
    [CrossRef]
  6. S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
    [CrossRef]
  7. V. Babicheva and Y. Lozovik, in AIP Conference Proceedings (2010), Vol.  1291, p. 103.
    [CrossRef]
  8. R. W. Wood, Phys. Rev. 48, 928 (1935).
    [CrossRef]
  9. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
    [CrossRef]
  10. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
    [CrossRef] [PubMed]
  11. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  12. P. Bouchon, F. Pardo, R. Haïdar, and J.-L. Pelouard, J. Opt. Soc. Am. A 27, 696 (2010).
    [CrossRef]

2010 (5)

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

V. Babicheva and Y. Lozovik, in AIP Conference Proceedings (2010), Vol.  1291, p. 103.
[CrossRef]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, R. Haïdar, and J.-L. Pelouard, J. Opt. Soc. Am. A 27, 696 (2010).
[CrossRef]

2008 (1)

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

2006 (1)

2005 (1)

F. Miyamaru and M. Hangyo, Phys. Rev. B 71, 165408(2005).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1985 (1)

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

1935 (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Babicheva, V.

V. Babicheva and Y. Lozovik, in AIP Conference Proceedings (2010), Vol.  1291, p. 103.
[CrossRef]

Bardou, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

Bouchon, P.

Bower, J. E.

Carr, D. W.

Chan, H. B.

Chen, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Cirelli, R. A.

Collin, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Ding, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Fan, Y.-X.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Ferry, E.

Fu, S.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Guérineau, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Haïdar, R.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, R. Haïdar, and J.-L. Pelouard, J. Opt. Soc. Am. A 27, 696 (2010).
[CrossRef]

Hangyo, M.

F. Miyamaru and M. Hangyo, Phys. Rev. B 71, 165408(2005).
[CrossRef]

Klemens, F.

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Li, H.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Lozovik, Y.

V. Babicheva and Y. Lozovik, in AIP Conference Proceedings (2010), Vol.  1291, p. 103.
[CrossRef]

Marcet, Z.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Miner, J.

Miyamaru, F.

F. Miyamaru and M. Hangyo, Phys. Rev. B 71, 165408(2005).
[CrossRef]

Pai, C. S.

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Pardo, F.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Pelouard, J.-L.

P. Bouchon, F. Pardo, R. Haïdar, and J.-L. Pelouard, J. Opt. Soc. Am. A 27, 696 (2010).
[CrossRef]

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ren, F.-F.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Rommeluère, S.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

Shi, D.-J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Tanner, D. B.

Taylor, J. A.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Vincent, G.

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

Wang, H.-T.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Woo, K.

Wood, R. W.

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Wu, J.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Wu, Q.-Y.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Xie, S.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Xu, H.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

Zhou, X.

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, Appl. Phys. Lett. 96, 221104 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Phys. Rev. (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Phys. Rev. B (2)

C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, Phys. Rev. B 78, 075406(2008).
[CrossRef]

F. Miyamaru and M. Hangyo, Phys. Rev. B 71, 165408(2005).
[CrossRef]

Phys. Rev. Lett. (3)

S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, and J.-L. Pelouard, Phys. Rev. Lett. 104, 027401 (2010).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
[CrossRef] [PubMed]

Solid State Commun. (1)

S. Xie, H. Li, S. Fu, X. Zhou, H. Xu, and J. Wu, Solid State Commun. 150, 1225 (2010).
[CrossRef]

Other (2)

V. Babicheva and Y. Lozovik, in AIP Conference Proceedings (2010), Vol.  1291, p. 103.
[CrossRef]

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectrum at normal incidence of a typical DMG with G < d / 2 . Two extinctions are clearly visible: the Rayleigh–Wood anomaly close to λ = d and a perfect extinction at a longer wavelength. Insets: scheme of the DMG and values of geometrical parameters.

Fig. 2
Fig. 2

Calculated transmission spectra of two structures: DMG with G = 2 μm < d / 2 (green dashed-dotted line), DMG with G = 6 μm > d / 2 (blue solid line). The spectrum of the squared transmission of a SMG with thickness h = 1.3 μm is plotted in the red dashed line.

Fig. 3
Fig. 3

Validation of the analytical model (dashed lines) by comparison with exact computations spectra (solid lines) for different gaps G and L = 0 (i.e., η = η + ). N represents the number of modes taken into account in the analytical model. The scheme represents two periods of the DMG structure and the different terms associated that are used in the analytical model.

Fig. 4
Fig. 4

T max and FWHM of the DMG plasmonic resonance as (a) a function of G at L = 0 and (b) a function of L at G = 1 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ = T η ( k = 0 ρ k ) η T = lim n T η ( I N ρ n I N ρ ) η T ,
τ = T η ( I N ρ ) 1 η T .

Metrics