Abstract

This Letter presents an open-path, all-fiber microcell and a micromachining method for its production. The proposed micromachining method utilizes the selective etching of a purposely designed phosphorus-doped fiber that is spliced in between two standard lead-in fibers. Microcells with various open optical-path lengths were successfully demonstrated. The proposed microcell can be used as a transmission cell or as a miniature Fabry–Perot resonator. The transmission losses and fringe contrast were experimentally investigated over a range of prototype microcells with different lengths. For example, the insertion losses below 1dB were demonstrated for 50μm or shorter open path prototype microcells, when immersed in dematerialized water.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription