Abstract

This Letter presents an open-path, all-fiber microcell and a micromachining method for its production. The proposed micromachining method utilizes the selective etching of a purposely designed phosphorus-doped fiber that is spliced in between two standard lead-in fibers. Microcells with various open optical-path lengths were successfully demonstrated. The proposed microcell can be used as a transmission cell or as a miniature Fabry–Perot resonator. The transmission losses and fringe contrast were experimentally investigated over a range of prototype microcells with different lengths. For example, the insertion losses below 1dB were demonstrated for 50μm or shorter open path prototype microcells, when immersed in dematerialized water.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
    [CrossRef] [PubMed]
  2. M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
    [CrossRef]
  3. T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, Opt. Express 16, 5764 (2008).
    [CrossRef] [PubMed]
  4. Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, J. Lightwave Technol. 27, 5426 (2009).
    [CrossRef]
  5. H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
    [CrossRef] [PubMed]
  6. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
    [CrossRef]
  7. E. Cibula and D. Donlagic, Opt. Express 15, 8719 (2007).
    [CrossRef] [PubMed]
  8. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
    [CrossRef] [PubMed]
  9. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Opt. Express 18, 14245 (2010).
    [CrossRef] [PubMed]
  10. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, Opt. Express 18, 141 (2010).
    [CrossRef] [PubMed]
  11. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
    [CrossRef] [PubMed]
  12. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, Opt. Lett. 32, 3071 (2007).
    [CrossRef] [PubMed]
  13. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, IEEE Photon. J. 3, 627 (2011).
    [CrossRef]
  14. E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
    [CrossRef] [PubMed]
  15. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

2011

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, IEEE Photon. J. 3, 627 (2011).
[CrossRef]

2010

2009

2008

2007

2005

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
[CrossRef] [PubMed]

2000

M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
[CrossRef] [PubMed]

1995

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

1977

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Bescherer, K.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Cheng, G. H.

Choi, H. Y.

Cibula, E.

Coviello, G.

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

Deng, H. Y.

Deng, M.

Donlagic, D.

Duan, D. W.

Durr, C. J.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

Feng, J.

Finazzi, V.

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Han, Y.

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Kou, J. L.

Leclerc, J. C.

M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
[CrossRef] [PubMed]

Lee, B. H.

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, IEEE Photon. J. 3, 627 (2011).
[CrossRef]

Li, Y.

Liao, X.

Liu, Z.

Loock, H. P.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Lu, Y. Q.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Mudhana, G.

Naessens, M.

M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
[CrossRef] [PubMed]

Oleschuk, R. D.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Paek, U.-C.

Park, K. S.

Pevec, S.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, IEEE Photon. J. 3, 627 (2011).
[CrossRef]

Pruneri, V.

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Ran, Z.

Ran, Z. L.

Rao, Y.

Rao, Y. J.

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Tran-Minh, C.

M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
[CrossRef] [PubMed]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

Tsai, H.

Villatoro, J.

Waechter, H.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Wei, T.

Xiao, H.

Xu, B.

Xu, F.

Yang, X. C.

Ye, L.

Zhang, J.

Zhu, T.

Anal. Chem.

H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, and H. P. Loock, Anal. Chem. 81, 9048 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, Appl. Phys. Lett. 87, 211106 (2005).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Ecotoxicol. Environ. Saf.

M. Naessens, J. C. Leclerc, and C. Tran-Minh, Ecotoxicol. Environ. Saf. 46, 181 (2000).
[CrossRef] [PubMed]

IEEE Photon. J.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, IEEE Photon. J. 3, 627 (2011).
[CrossRef]

J. Lightwave Technol.

Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, J. Lightwave Technol. 27, 5426 (2009).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) MF, (b) fusion-spliced fiber structure before etching, (c) experimental setup (SLED, superluminescent diode λ = 1550 nm , Δ λ = 60 nm ; OSA, optical spectrum analyzer).

Fig. 2
Fig. 2

Scanning electron microscope image of typical MCs: (a)  60 μm long MC, (b)  15 μm long MC.

Fig. 3
Fig. 3

Typical transmission versus etching time during production of 35 μm long MC.

Fig. 4
Fig. 4

Magnified area of MC inner surface (the typical MC was mechanically broken to expose lead-in fiber frontal surface): (a) broken cell, (b) magnified area of lead-in fiber center.

Fig. 5
Fig. 5

Experimentally measured and modeled losses of MCs with different lengths at 1550 nm .

Fig. 6
Fig. 6

Spectra of typical 95 μm long MC.

Fig. 7
Fig. 7

Typical loss of MC composed of standard SMF and 50 μm /step index silica core multimode fiber.

Metrics