Abstract

We propose and analyze a novel (to the best of our knowledge) design of a polarization rotator (PR) based on silica photonic crystal fiber. The proposed design has a rectangular core region with a slanted sidewall. The simulation results are obtained using the full vectorial finite difference method as well as the full vectorial finite dif ference beam propagation method. The numerical results reveal that the suggested PR can provide a nearly 100% polarization conversion ratio with a device length of 3102μm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Heismann and R. W. Smith, IEEE J. Sel. Top. Quantum Electron. 2, 311 (1994).
  2. I. Morita, K. Tanka, N. Edagawa, and M. Suzuki, J. Lightwave Technol. 17, 2506 (1999).
    [CrossRef]
  3. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
    [CrossRef]
  4. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, Opt. Express 17, 7145 (2009).
    [CrossRef] [PubMed]
  5. S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
    [CrossRef]
  6. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
    [CrossRef]
  7. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, Opt. Express 13, 7483 (2005).
    [CrossRef] [PubMed]
  8. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. Alkeskjold, and A. Bjarklev, Appl. Opt. 48, 497 (2009).
    [CrossRef] [PubMed]
  9. M. F. O. Hameed and S. S. A. Obayya, J. Lightwave Technol. 28, 806 (2010).
    [CrossRef]
  10. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, J. Lightwave Technol. 26, 1423 (2008).
    [CrossRef]
  11. W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
    [CrossRef]

2010

2009

2008

2005

2003

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

2001

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

1999

1994

F. Heismann and R. W. Smith, IEEE J. Sel. Top. Quantum Electron. 2, 311 (1994).

1993

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

1991

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Alferness, R.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Alkeskjold, T.

Anawati, A.

Bassi, P.

Bayat, K.

Bjarklev, A.

Chaudhuri, S. K.

Edagawa, N.

El-Mikati, H. A.

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

Eskildsen, L.

Fallahkhair, A. B.

Grattan, K. T. V.

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

Hameed, M. F. O.

Heismann, F.

F. Heismann and R. W. Smith, IEEE J. Sel. Top. Quantum Electron. 2, 311 (1994).

Hermann, D.

Huang, W. P.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Koch, T.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Koren, U.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Li, K. S.

Miller, B. I.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Morita, I.

Murphy, T. E.

Nielsen, M.

Obayya, S. S. A.

M. F. O. Hameed and S. S. A. Obayya, J. Lightwave Technol. 28, 806 (2010).
[CrossRef]

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

Oron, M.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Rahman, B. M. A.

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

Riishede, J.

Safavi-Naeini, S.

Scolari, L.

Shani, Y.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Smith, R. W.

F. Heismann and R. W. Smith, IEEE J. Sel. Top. Quantum Electron. 2, 311 (1994).

Somasiri, N.

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

Suzuki, M.

Tanka, K.

Wei, L.

Weirich, J.

Xu, C. L.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Young, M. G.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, Appl. Phys. Lett. 59, 1278 (1991).
[CrossRef]

IEEE J. Quantum Electron.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Heismann and R. W. Smith, IEEE J. Sel. Top. Quantum Electron. 2, 311 (1994).

IEEE Photon. Technol. Lett.

S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikati, IEEE Photon. Technol. Lett. 13, 681 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Quantum Electron.

S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, and K. T. V. Grattan, Opt. Quantum Electron. 35, 297 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross sections of the (a) conventional rectangular lattice PCF and (b) proposed PCF PR.

Fig. 2
Fig. 2

Contour plot of the nondominant H x and dominant H y field profiles of the fundamental quasi-TE mode for (a), (b) the conventional rectangular lattice PCF and for (c), (d) the reported PCF PR.

Fig. 3
Fig. 3

Variation of the hybridness and the conversion length with the hole pitch in the x direction Λ x .

Fig. 4
Fig. 4

Contour plot of H y and H x field profiles at different propagation lengths z = 0 , L π / 2 , and L π .

Fig. 5
Fig. 5

Evolution of the TM powers for the TE excitation along the propagation direction at different hole pitches in the x direction Λ x .

Fig. 6
Fig. 6

Variation of the hybridness and the conversion length with the hole diameters.

Fig. 7
Fig. 7

Evolution of the TM powers for the TE excitation along the propagation direction at different hole diameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L π = π / ( β TE β TM ) ,
Hybridness = max | H u | / max | H v | ,

Metrics