Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gap surface plasmon polaritons enhanced by a plasmonic lens

Not Accessible

Your library or personal account may give you access

Abstract

We numerically investigate the optical field enhancement based on gap surface plasmon polaritons (GSPPs) that are enhanced by propagating surface waves launched by a circular slit at a metal–dielectric interface. The optical field enhancement originates not only from multiple scattering and coupling of GSPPs in the spacer region between two metal layers but also from propagating surface plasmon polaritons (SPPs) launched by a circular plasmonic lens. We find that the combination of the GSPPs and the propagating SPPs launched by the plasmonic lens can achieve extremely strong field confinement, and we find that the surface-enhanced Raman scattering (SERS) enhancement factor can be up to 1015 at the tip of the equilateral triangular nanostructures. The structure proposed here is expected to find promising applications where strong field enhancement is desired, such as optical sensing with the SERS effect.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
SERS-active substrate based on gap surface plasmon polaritons

Hyun Chul Kim and Xing Cheng
Opt. Express 17(20) 17234-17241 (2009)

Nonlinear resonance-enhanced excitation of surface plasmon polaritons

Chun-hua Xue, Hai-tao Jiang, and Hong Chen
Opt. Lett. 36(6) 855-857 (2011)

Surface plasmon polariton propagation in nanoscale metal gap waveguides

Bing Wang and Guo Ping Wang
Opt. Lett. 29(17) 1992-1994 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved