Abstract

We generate experimentally optical ring lattice structures which are the superposition of two coaxial Laguerre–Gaussian modes with common waist position and waist parameter. Although these structures are not dif fraction-free, they show self-healing property. This self-reconstruction of the ring lattice can be understood by looking into the transverse energy flow at different z planes. The experimental results are verified by the numerical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
    [CrossRef]
  2. E. Galvez, N. Smiley, and N. Fernandes, Proc. SPIE 6131, 613105 (2006).
    [CrossRef]
  3. S. Franke-Arnold, J. Leach, M. Padgett, V. Lembessis, D. Ellinas, A. Wright, J. Girkin, P. Ohberg, and A. Arnold, Opt. Express 15, 8619 (2007).
    [CrossRef] [PubMed]
  4. A. Bekshaev, M. Soskin, and M. V. Vasnetsov, Opt. Lett. 31, 694 (2006).
    [CrossRef] [PubMed]
  5. A. Bekshaev and M. Soskin, Opt. Lett. 31, 2199 (2006).
    [CrossRef] [PubMed]
  6. S. Baumann, D. Kalb, L. MacMillan, and E. Galvez, Opt. Express 17, 9818 (2009).
    [CrossRef] [PubMed]
  7. Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun. 151, 207 (1998).
    [CrossRef]
  8. J. Broky, G. Siviloglou, A. Dogariu, and D. Christodoulides, Opt. Express 16, 12880 (2008).
    [CrossRef] [PubMed]
  9. A. Kumar, S. Prabhakar, P. Vaity, and R. P. Singh, Opt. Lett. 36, 1161 (2011).
    [CrossRef] [PubMed]
  10. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
    [CrossRef]
  11. R. Martnez-Herrero and P. M. Mejas, Proc. SPIE 6101, 61011D (2006).
  12. J. Serna, R. Martinez-Herrero, and P. M. Mejias, J. Opt. Soc. Am. A 8, 1094 (1991).
    [CrossRef]

2011 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (4)

A. Bekshaev, M. Soskin, and M. V. Vasnetsov, Opt. Lett. 31, 694 (2006).
[CrossRef] [PubMed]

A. Bekshaev and M. Soskin, Opt. Lett. 31, 2199 (2006).
[CrossRef] [PubMed]

E. Galvez, N. Smiley, and N. Fernandes, Proc. SPIE 6131, 613105 (2006).
[CrossRef]

R. Martnez-Herrero and P. M. Mejas, Proc. SPIE 6101, 61011D (2006).

1999 (1)

L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
[CrossRef]

1998 (1)

Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun. 151, 207 (1998).
[CrossRef]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
[CrossRef]

1991 (1)

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
[CrossRef]

Arnold, A.

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
[CrossRef]

Baumann, S.

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
[CrossRef]

Bekshaev, A.

Bouchal, Z.

Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun. 151, 207 (1998).
[CrossRef]

Broky, J.

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun. 151, 207 (1998).
[CrossRef]

Christodoulides, D.

Dogariu, A.

Ellinas, D.

Fernandes, N.

E. Galvez, N. Smiley, and N. Fernandes, Proc. SPIE 6131, 613105 (2006).
[CrossRef]

Franke-Arnold, S.

Galvez, E.

Girkin, J.

Kalb, D.

Kumar, A.

Leach, J.

Lembessis, V.

MacMillan, L.

Martinez-Herrero, R.

Martnez-Herrero, R.

R. Martnez-Herrero and P. M. Mejas, Proc. SPIE 6101, 61011D (2006).

Mejas, P. M.

R. Martnez-Herrero and P. M. Mejas, Proc. SPIE 6101, 61011D (2006).

Mejias, P. M.

Ohberg, P.

Padgett, M.

Padgett, M. J.

L. Allen, M. J. Padgett, and M. Babiker, Prog. Opt. 39, 291 (1999).
[CrossRef]

Prabhakar, S.

Serna, J.

Singh, R. P.

Siviloglou, G.

Smiley, N.

E. Galvez, N. Smiley, and N. Fernandes, Proc. SPIE 6131, 613105 (2006).
[CrossRef]

Soskin, M.

Vaity, P.

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
[CrossRef]

Vasnetsov, M. V.

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, Opt. Commun. 151, 207 (1998).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, Opt. Commun. 96, 123 (1993).
[CrossRef]

Wright, A.

Supplementary Material (6)

» Media 1: AVI (3814 KB)     
» Media 2: AVI (3814 KB)     
» Media 3: AVI (2774 KB)     
» Media 4: AVI (3467 KB)     
» Media 5: AVI (3467 KB)     
» Media 6: AVI (3467 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. L, laser; BS, beam splitter; SLM, spatial light modulator; L1, lens; CCD, camera; PC1, PC2, computer.

Fig. 2
Fig. 2

Experimental intensity profile. For reference, the horizontal arrow has been placed to visualize the rotation.

Fig. 3
Fig. 3

Theoretical intensity profile for the same z values as in Fig. 2.

Fig. 4
Fig. 4

Experimental intensity profile; first row (Media 1); second row (Media 2); third row (Media 3); last row (interferogram for the third row).

Fig. 5
Fig. 5

Numerical intensity profile; first row (Media 4); second row (Media 5); third row (Media 6); last row (interferogram for the third row at same z values as in Fig. 4).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u p l ( r , ϕ , z ) = 1 w ( z ) 2 p ! π ( p + | l | ) ! ( r 2 w ( z ) ) | l | exp [ r 2 w 2 ( z ) ] exp [ i k z r 2 2 ( z 2 + z R 2 ) ] L p l ( 2 r 2 w 2 ( z ) ) exp [ i l ϕ ] exp [ i ( 2 p + l + 1 ) ψ ( z ) ] ,
w ( z ) = w o 1 + ( z z R ) 2 , z R = π w o 2 λ , ψ ( z ) = arctan ( z z R ) .
u ( r , ϕ , z ) = u p l + u p l .
ϕ ( z ) = ϕ o + B ψ ( z ) ,
B = 2 ( p p ) + | l | | l | l l .
S = S z + S = 1 2 η o [ | u | 2 z ^ + i 2 k [ u * u u u * ] ] ,

Metrics