Abstract

We experimentally and numerically investigate the intracavity ionization of a dilute gas target by an ultrashort pulse inside a femtosecond enhancement cavity. Numerical simulations detail how the dynamic ionization of the gas target limits the achievable peak intensity of the evolving intracavity pulse beyond that of linear cavity losses, setting a constraint on the strength of the nonlinear interaction that can be sustained in such optical cavities. Experimental measurements combined with numerical simulations predict ionization levels in a femtosecond enhancement cavity for the first time. We demonstrate how the resonant response of the femtosecond enhancement cavity can itself be used as a sensitive probe of optical nonlinearities at high intensities.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription