Abstract

A method of fabricating a reflective notch coupler in an optical fiber has been developed. The coupler consists of a 45° microprism that penetrates into the core of a multimode optical fiber. One face, at 90° to the fiber axis, is nonreflective, and one face, at 45° to the fiber axis, is reflective. Our method of fabricating a notch and selectively mirroring only the 45° face is low-cost, precise, and easily scalable. The coupler allows near-100% coupling of light into an optical fiber from the side, while allowing coupling of any desired fraction of light out from the core at a 90° angle on the opposite side of the fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Ripin and L. Goldberg, Electron. Lett. 31, 2204 (1995).
    [CrossRef]
  2. A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, Opt. Lett. 26, 1054 (2001).
    [CrossRef]
  3. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
    [CrossRef]
  4. C. Wang, Sensors 9, 7595 (2009).
    [CrossRef]
  5. V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
    [CrossRef] [PubMed]
  6. C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
    [CrossRef]
  7. S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
    [CrossRef]
  8. www.zemax.com.

2009

C. Wang, Sensors 9, 7595 (2009).
[CrossRef]

2006

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

2002

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

2001

1995

D. J. Ripin and L. Goldberg, Electron. Lett. 31, 2204 (1995).
[CrossRef]

1991

C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
[CrossRef]

1989

V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
[CrossRef] [PubMed]

Allen, V.

V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
[CrossRef] [PubMed]

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Chartier, T.

Charych, D. H.

C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
[CrossRef]

Essex, T. J. H.

V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
[CrossRef] [PubMed]

Goldberg, L.

D. J. Ripin and L. Goldberg, Electron. Lett. 31, 2204 (1995).
[CrossRef]

Goss, C. A.

C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
[CrossRef]

Hideur, A.

Kinnunen, T.

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Loock, H.-P.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Majda, M.

C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
[CrossRef]

McKenzie, A. L.

V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
[CrossRef] [PubMed]

Oleschuk, R. D.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Özkul, C.

Rämö, J.

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

Ripin, D. J.

D. J. Ripin and L. Goldberg, Electron. Lett. 31, 2204 (1995).
[CrossRef]

Sanchez, F.

Sandlin, S.

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

Sillanpää, M.

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Wang, C.

C. Wang, Sensors 9, 7595 (2009).
[CrossRef]

Anal. Chem.

C. A. Goss, D. H. Charych, and M. Majda, Anal. Chem. 63, 85 (1991).
[CrossRef]

Electron. Lett.

D. J. Ripin and L. Goldberg, Electron. Lett. 31, 2204 (1995).
[CrossRef]

J. Chem. Phys.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Loock, J. Chem. Phys. 117, 10444 (2002).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

V. Allen, T. J. H. Essex, and A. L. McKenzie, Phys. Med. Biol. 34, 927 (1989).
[CrossRef] [PubMed]

Sensors

C. Wang, Sensors 9, 7595 (2009).
[CrossRef]

Surf. Coat. Technol.

S. Sandlin, T. Kinnunen, J. Rämö, and M. Sillanpää, Surf. Coat. Technol. 201, 3061 (2006).
[CrossRef]

Other

www.zemax.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Approaches to side-coupling into optical fibers. (a) Embedded 90 ° v-groove, (b) embedded 45 ° notch, (c) reflective 45 ° notch, (d) simple reflective 45 ° notch fabrication in a fiber end. Inset: end view of (d), where d p is the penetration depth of the notch.

Fig. 2
Fig. 2

Selected reflective notch fabrication steps.

Fig. 3
Fig. 3

(a) Zemax simulations of light coupling out from the notch, assuming multimode propagation of light in the core, (b) percentage of light coupled out from the fiber core as a function of percentage penetration into the core. Solid points are the results of Zemax ray tracing simulations [Eq. (2)], and the solid curve is a plot of Eq. (1).

Fig. 4
Fig. 4

Schematic of experimental demonstration.

Fig. 5
Fig. 5

Experimental demonstration of using a reflective notch as both an input and an output coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = 100 π [ cos 1 ( 1 f ) ( 1 f ) { f ( 2 f ) } 1 2 ] ,
L = D 1 D 1 + D 2 + D 3 × 100.

Metrics